

Precise and Complete Requirements? An Elusive Goal

Lionel Briand

MO2RE 2024 Keynote

http://www.lbriand.info

Canada Chaires Research de recherche Chairs du Canada

• Effective software development requires documented, precise, complete requirements up-front.

- Effective software development requires documented, precise, complete requirements up-front.
- Such requirements must remain up-to-date all along development, up to deployment, and after that during system evolution.

- Effective software development requires documented, precise, complete requirements up-front.
- Such requirements must remain up-to-date all along development, up to deployment, and after that during system evolution.
- That sounds logical to many. (except agile folks), and drives (most of) academic research.

 "For many applications a highly detailed technical specification is just too much up front since a quick discussion could render their carefully typeset document useless. Instead, start with a vision. If everyone understands the overall picture then the requirements can get filled in along the way through discussions."

- "For many applications a highly detailed technical specification is just too much up front since a quick discussion could render their carefully typeset document useless. Instead, start with a vision. If everyone understands the overall picture then the requirements can get filled in along the way through discussions."
- "Steve Jobs believed that customers cannot describe exactly what they want the future products to look like, so it is your job to deliver them. So, unless you deliver custom software all the time, forget formal specs and start by creating prototypes..."

- "For many applications a highly detailed technical specification is just too much up front since a quick discussion could render their carefully typeset document useless. Instead, start with a vision. If everyone understands the overall picture then the requirements can get filled in along the way through discussions."
- "Steve Jobs believed that customers cannot describe exactly what they want the future products to look like, so it is your job to deliver them. So, unless you deliver custom software all the time, forget formal specs and start by creating prototypes..."
- "Unless you're building something to a specification, you usually only have a vague idea of what the final product should look like at the time you start a project."

- "For many applications a highly detailed technical specification is just too much up front since a quick discussion could render their carefully typeset document useless. Instead, start with a vision. If everyone understands the overall picture then the requirements can get filled in along the way through discussions."
- "Steve Jobs believed that customers cannot describe exactly what they want the future products to look like, so it is your job to deliver them. So, unless you deliver custom software all the time, forget formal specs and start by creating prototypes..."
- "Unless you're building something to a specification, you usually only have a vague idea of what the final product should look like at the time you start a project."

• In practice resources and time are limited, uncertainty about requirements is high

- In practice resources and time are limited, uncertainty about requirements is high
- Trade-offs are unavoidable

- In practice resources and time are limited, uncertainty about requirements is high
- Trade-offs are unavoidable
- Often, requirements are subject to such tradeoffs, leading to imprecise, incomplete, or obsolete (documented) requirements

- In practice resources and time are limited, uncertainty about requirements is high
- Trade-offs are unavoidable
- Often, requirements are subject to such tradeoffs, leading to imprecise, incomplete, or obsolete (documented) requirements

 Diversity: "RE practice differs according to the types of organization developing software, the types of products being developed, and the particular application domain of the product. " (Lui et al. 2010)

 Requirements serve as a contract, to be validated during acceptance testing

- Requirements serve as a contract, to be validated during acceptance testing
- Requirements traceability is required by standards or regulations, e.g., safety critical systems

- Requirements serve as a contract, to be validated during acceptance testing
- Requirements traceability is required by standards or regulations, e.g., safety critical systems

Enterprise Architect Sparx Systems

- Requirements serve as a contract, to be validated during acceptance testing
- Requirements traceability is required by standards or regulations, e.g., safety critical systems
- Even then, the precision and completeness of requirements are often elusive goals

Enterprise Architect Sparx Systems

- Requirements serve as a contract, to be validated during acceptance testing
- Requirements traceability is required by standards or regulations, e.g., safety critical systems
- Even then, the precision and completeness of requirements are often elusive goals
- The goal is only to achieve certification/regulatory compliance

Enterprise Architect Sparx Systems

• Customers do not have a clear understanding of system requirements themselves, including scope of the system, major functional features and nonfunctional attributes.

- Customers do not have a clear understanding of system requirements themselves, including scope of the system, major functional features and nonfunctional attributes.
- Users' needs and understanding constantly change.

- Customers do not have a clear understanding of system requirements themselves, including scope of the system, major functional features and nonfunctional attributes.
- Users' needs and understanding constantly change.
- Project schedule is too tight to allow sufficient interaction and learning period between customer and development team.

- Customers do not have a clear understanding of system requirements themselves, including scope of the system, major functional features and nonfunctional attributes.
- Users' needs and understanding constantly change.
- Project schedule is too tight to allow sufficient interaction and learning period between customer and development team.
- Broken communication links between customer, analyst and developer.

- Customers do not have a clear understanding of system requirements themselves, including scope of the system, major functional features and nonfunctional attributes.
- Users' needs and understanding constantly change.
- Project schedule is too tight to allow sufficient interaction and learning period between customer and development team.
- Broken communication links between customer, analyst and developer.

Liu et al., "Why Requirements Engineering Fails: A Survey Report from China", IEEE RE 2010

Recommendations: Liu et al.

Recommendations: Liu et al.

 Link requirements with testing and adopt a test-driven design process.

Recommendations: Liu et al.

- Link requirements with testing and adopt a test-driven design process.
- Develop RE tools that better fit the real-world needs of the customers and engineers.

• Focus on safety-critical systems, where precise and complete requirements are expected to be most common.

- Focus on safety-critical systems, where precise and complete requirements are expected to be most common.
- All companies write their requirements documents in natural language. UML diagrams and other types of diagrams (as FTA and flowchart) are seldom used to describe the requirements.

- Focus on safety-critical systems, where precise and complete requirements are expected to be most common.
- All companies write their requirements documents in natural language. UML diagrams and other types of diagrams (as FTA and flowchart) are seldom used to describe the requirements.
- Two companies used "formal methods", but not from software engineering: Equations from control engineering

- Focus on safety-critical systems, where precise and complete requirements are expected to be most common.
- All companies write their requirements documents in natural language. UML diagrams and other types of diagrams (as FTA and flowchart) are seldom used to describe the requirements.
- Two companies used "formal methods", but not from software engineering: Equations from control engineering
- 61% use word processing and spreadsheets as RE tools

- Focus on safety-critical systems, where precise and complete requirements are expected to be most common.
- All companies write their requirements documents in natural language. UML diagrams and other types of diagrams (as FTA and flowchart) are seldom used to describe the requirements.
- Two companies used "formal methods", but not from software engineering: Equations from control engineering
- 61% use word processing and spreadsheets as RE tools

Martins and Gorschek, "Requirements Engineering for Safety-Critical Systems: An Interview Study with Industry Practitioners", IEEE TSE 2020
• "When someone does not understand a requirement a person conversation is performed, usually people go to the team leader, systems engineers or safety engineer to get the understanding. This is done in an informal way."

- "When someone does not understand a requirement a person conversation is performed, usually people go to the team leader, systems engineers or safety engineer to get the understanding. This is done in an informal way."
- "Practitioners from three companies mentioned that somehow it is necessary to produce more useful documents in order to meet the daily needs of the system developers. It seems that the requirements documents still are more to show compliance than to be really used by development teams."

- "When someone does not understand a requirement a person conversation is performed, usually people go to the team leader, systems engineers or safety engineer to get the understanding. This is done in an informal way."
- "Practitioners from three companies mentioned that somehow it is necessary to produce more useful documents in order to meet the daily needs of the system developers. It seems that the requirements documents still are more to show compliance than to be really used by development teams."
- "The designers and programmers know what to do, of course the requirements specification is there to drive it, but in details it is very common that the requirements don't really drive the designers/programmers."

Lack of skills, training (often invoked by academics)

- Lack of skills, training (often invoked by academics)
- Frequent requirements changes, uncertainty

- Lack of skills, training (often invoked by academics)
- Frequent requirements changes, uncertainty
- Time pressure, lack of resources

- Lack of skills, training (often invoked by academics)
- Frequent requirements changes, uncertainty
- Time pressure, lack of resources
- Lack of adequate tool support and automation

- Lack of skills, training (often invoked by academics)
- Frequent requirements changes, uncertainty
- Time pressure, lack of resources
- Lack of adequate tool support and automation
- Result: Low return on investment (Rol) for precise, complete requirements (real or perceived?)

• Informal, natural language requirements

- Informal, natural language requirements
- Sometimes completed with informal diagrams (UML, SysML ...)

- Informal, natural language requirements
- Sometimes completed with informal diagrams (UML, SysML ...)
- Quality (precision, completeness, ...) is relatively low

My Take

My Take

- Higher Rol for precise requirements would require effective support for:
 - Quality assurance
 - Change management
 - Traceability (e.g., to systems tests)

My Take

- Higher Rol for precise requirements would require effective support for:
 - Quality assurance
 - Change management
 - Traceability (e.g., to systems tests)
- Example projects next

Three Essential Technologies

- NL requirements QA
- NL requirements change impact (CI) analysis
- NL Requirements-driven acceptance testing

Requirements Quality Assurance

Manual QA is expensive and tedious

- Manual QA is expensive and tedious
- Especially in the context of frequent changes

- Manual QA is expensive and tedious
- Especially in the context of frequent changes
- No systematic feedback

- Manual QA is expensive and tedious
- Especially in the context of frequent changes
- No systematic feedback
- Leads to low quality requirements

- Manual QA is expensive and tedious
- Especially in the context of frequent changes
- No systematic feedback
- Leads to low quality requirements
- Example project in the financial domain

Global leading supplier of post-trading services

- Global leading supplier of post-trading services
- 2500 customers in 110 countries

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations
- Loosely follows the Rupp template

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations
- Loosely follows the Rupp template
- 13 Software Requirements Specifications (SRS)

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations
- Loosely follows the Rupp template
- 13 Software Requirements Specifications (SRS)
- 2725 requirements

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations
- Loosely follows the Rupp template
- 13 Software Requirements Specifications (SRS)
- 2725 requirements
- Written by different business analysts

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations
- Loosely follows the Rupp template
- 13 Software Requirements Specifications (SRS)
- 2725 requirements
- Written by different business analysts
- Relatively low quality, not used for validation

- Global leading supplier of post-trading services
- 2500 customers in 110 countries
- Compliance with financial regulations
- Loosely follows the Rupp template
- 13 Software Requirements Specifications (SRS)
- 2725 requirements
- Written by different business analysts
- Relatively low quality, not used for validation

Controlled Natural Language: Rimay
• Strike a balance between the usability of NL and the rigor of formal languages

- Strike a balance between the usability of NL and the rigor of formal languages
- More specialized concepts and constructs than conventional templates

- Strike a balance between the usability of NL and the rigor of formal languages
- More specialized concepts and constructs than conventional templates
- Qualitative analysis

- Strike a balance between the usability of NL and the rigor of formal languages
- More specialized concepts and constructs than conventional templates
- Qualitative analysis
- Evaluation

- Strike a balance between the usability of NL and the rigor of formal languages
- More specialized concepts and constructs than conventional templates
- Qualitative analysis
- Evaluation

Veziaga et al., "On systematically building a controlled natural language for functional requirements.", Empir. Softw. Eng. 26(4): 79 (2021)

- Strike a balance between the usability of NL and the rigor of formal languages
- More specialized concepts and constructs than conventional templates
- Qualitative analysis
- Evaluation

Veziaga et al., "On systematically building a controlled natural language for functional requirements.", Empir. Softw. Eng. 26(4): 79 (2021)

Quality Attributes

- Quality attributes enforced by Rimay
- Completeness: Presence of all the information required for the requirement to be complete
- Correctness: Presence of correct information content in the correct order of appearance
- Clarity: Usage of structures, phrases, and words that are free of ambiguity
- Atomic requirements: A requirement with a single system function

Smells

 10 smells: "1. Non atomic", "2. Incomplete requirement", "3. Incorrect order requirement", "4. Coordination ambiguity", "5. Not requirement", "6. Incomplete condition", "7. Incomplete system response", "8. Incomplete scope", "9. Passive voice", and "10. Not precise verb"

Condition (Missing Actor)

When creating a new participant, System-A must open in edit mode the detail participant screen.

System Response

Condition

When a settlement request has reached the status "Settled" then System-A must sed the settlement request to System-B.

System Response (No verb)

• Excerpt of the Rimay conceptual model:

• Example:

 10 Rimay patterns: "1. Scope and system response", "2. Scope, condition (precondition), and system response", "3. Scope, condition(Trigger), and system response", "4. Scope, condition (Time) and system response", "5.
System response", "6. Condition(Precondition), and system response", "7. Condition(Trigger), and system response", "8. Condition (Time) and system response", "9. Scope, multiple conditions, and system response", "10. Multiple conditions, and system response"

- 10 Rimay patterns: "1. Scope and system response", "2. Scope, condition (precondition), and system response", "3. Scope, condition(Trigger), and system response", "4. Scope, condition (Time) and system response", "5. System response", "6. Condition(Precondition), and system response", "7. Condition(Trigger), and system response", "8. Condition (Time) and system response", "9. Scope, multiple conditions, and system response", "10. Multiple conditions, and system response"
- Pattern Name: System response

- 10 Rimay patterns: "1. Scope and system response", "2. Scope, condition (precondition), and system response", "3. Scope, condition(Trigger), and system response", "4. Scope, condition (Time) and system response", "5. System response", "6. Condition(Precondition), and system response", "7. Condition(Trigger), and system response", "8. Condition (Time) and system response", "9. Scope, multiple conditions, and system response", "10. Multiple conditions, and system response"
- Pattern Name: System response
- Rimay Pattern: The? Actor must <Action> (every "Text")?

- 10 Rimay patterns: "1. Scope and system response", "2. Scope, condition (precondition), and system response", "3. Scope, condition(Trigger), and system response", "4. Scope, condition (Time) and system response", "5.
 System response", "6. Condition(Precondition), and system response", "7. Condition(Trigger), and system response", "8. Condition (Time) and system response", "9. Scope, multiple conditions, and system response", "10. Multiple conditions, and system response"
- Pattern Name: System response
- Rimay Pattern: The? Actor must <Action> (every "Text")?
- Example: The System-A must link "allegement message-A" to the "outgoing message-123"

1. Apply preprocessing steps to requirements

- 1. Apply preprocessing steps to requirements
- 2. Divide requirements into scope, condition and system response

- 1. Apply preprocessing steps to requirements
- 2. Divide requirements into scope, condition and system response
- 3. Identify smells present in requirements

Requirements

Rimay

Smells

- 1. Apply preprocessing steps to requirements
- 2. Divide requirements into scope, condition and system response
- Specifications Patterns The manual distance of the manual distance
- 3. Identify smells present in requirements
- 4. Suggest a Rimay pattern to fix detected smells

• Evaluation on unseen SRSs

- Evaluation on unseen SRSs
- Many instances of smells

- Evaluation on unseen SRSs
- Many instances of smells
- Overall precision and recall of 89% in detecting smells

- Evaluation on unseen SRSs
- Many instances of smells
- Overall precision and recall of 89% in detecting smells
- Overall precision of 96% and recall of 94% in suggesting Rimay patterns

- Evaluation on unseen SRSs
- Many instances of smells
- Overall precision and recall of 89% in detecting smells
- Overall precision of 96% and recall of 94% in suggesting Rimay patterns
- Based on the pattern it is straightforward to fix a requirement

- Evaluation on unseen SRSs
- Many instances of smells
- Overall precision and recall of 89% in detecting smells
- Overall precision of 96% and recall of 94% in suggesting Rimay patterns
- Based on the pattern it is straightforward to fix a requirement
- Promising tool for automated QA of natural language requirements for information systems

- Evaluation on unseen SRSs
- Many instances of smells
- Overall precision and recall of 89% in detecting smells
- Overall precision of 96% and recall of 94% in suggesting Rimay patterns
- Based on the pattern it is straightforward to fix a requirement
- Promising tool for automated QA of natural language requirements for information systems

Acceptance Testing Driven by Use Case Specifications

Acceptance testing from requirements

- Acceptance testing from requirements
- Systematically Identifying and designing test scenarios

- Acceptance testing from requirements
- Systematically Identifying and designing test scenarios
- Overcome biases and blind spots

- Acceptance testing from requirements
- Systematically Identifying and designing test scenarios
- Overcome biases and blind spots
- Traceability requirements system tests often required

Test Cases from Use Cases

Test Cases from Use Cases

• Test case descriptions from use case descriptions

Test Cases from Use Cases

- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Manual and laborious task

- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Manual and laborious task
- Context: Automotive software.

- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Manual and laborious task
- Context: Automotive software.

- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Manual and laborious task
- Context: Automotive software.

Use cases were a basis for contractual agreements

- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Manual and laborious task
- Context: Automotive software.

- Use cases were a basis for contractual agreements
- Automation based on NLP: UMTG

- Test case descriptions from use case descriptions
- Use case specifications are common and operational representations of requirements
- Manual and laborious task
- Context: Automotive software.

- Use cases were a basis for contractual agreements
- Automation based on NLP: UMTG

UMTG

Restricted Use Case Specifications

- Restricted Use Case Modeling (RUCM)
- Experiments shows it yields better use cases
- Compliance is tool-supported (NLP)
- More analyzable with NLP

Yue et al., ACM TOSEM 2013

RUCM Specifications Example

• It is hard for engineers to capture all the possible scenarios involving error conditions. UMTG covers them.

- It is hard for engineers to capture all the possible scenarios involving error conditions. UMTG covers them.
- 5 to 10 minutes to write each constraints (but we also developed a tool to generate them)

- It is hard for engineers to capture all the possible scenarios involving error conditions. UMTG covers them.
- 5 to 10 minutes to write each constraints (but we also developed a tool to generate them)
- 10 secs/test case using a constraint solver based on Alloy

- It is hard for engineers to capture all the possible scenarios involving error conditions. UMTG covers them.
- 5 to 10 minutes to write each constraints (but we also developed a tool to generate them)
- 10 secs/test case using a constraint solver based on Alloy
- Less than 10 minutes in total to generate all system test cases (54)

- It is hard for engineers to capture all the possible scenarios involving error conditions. UMTG covers them.
- 5 to 10 minutes to write each constraints (but we also developed a tool to generate them)
- 10 secs/test case using a constraint solver based on Alloy
- Less than 10 minutes in total to generate all system test cases (54)

Inter-Requirements Change Impact Analysis

• The ability to follow the life of software artifacts, in both a backward and forward direction, e.g., requirements, design decisions, test cases.

- The ability to follow the life of software artifacts, in both a backward and forward direction, e.g., requirements, design decisions, test cases.
- Requirements traceability: Trace a requirement from its emergence to its fulfillment, e.g., acceptance test cases.

- The ability to follow the life of software artifacts, in both a backward and forward direction, e.g., requirements, design decisions, test cases.
- Requirements traceability: Trace a requirement from its emergence to its fulfillment, e.g., acceptance test cases.
- Motivations:
 - Understand rationale
 - Certification, auditing, compliance with standards
 - Assess impact of change

Traceability between Requirements

- Natural language
- Sometimes structured (template)
- Hundreds of traces
- Domain terminology, concepts, and their relationships are key to discovering traces among requirements

Requirements

• Rely on syntactic and semantic similarity measures

Requirements-Requirements

[RE 2015, TSE 2015, ESEM 2014, ESEM 2013]

160 Requirements 9 change scenarios

72 Requirements 5 change scenarios

Example

- R1: The mission operation controller shall transmit satellite status reports to the user help desk.
- R2: The satellite management system shall provide users with the ability to transfer maintenance and service plans to the user help desk.
- R3: The mission operation controller shall transmit any detected anomalies with the user help desk.

Change Example

- R1: The mission operation controller shall transmit satellite status reports to the user help desk document repository.
- R2: The satellite management system shall provide users with the ability to transfer maintenance and service plans to the user help desk.
- R3: The mission operation controller shall transmit any detected anomalies with the user help desk.

Challenge#1 -Capture Changes Precisely

- R1: The mission operation controller shall transmit satellite status reports to the <u>user help desk</u> document repository.
- R2: The satellite management system shall provide users with the ability to transfer maintenance and service plans to the user help desk.
- R3: The mission operation controller shall transmit any detected anomalies with the user help desk.

Challenge#2 -Capture Change Rationale

- R1: The mission operation controller shall transmit satellite status reports to the <u>user help desk</u> document repository.
- R2: The satellite management system shall provide users with the ability to transfer maintenance and service plans to the <u>user help desk</u>.
- R3: The mission operation controller shall transmit any detected anomalies with the <u>user help desk</u>.

Challenge#2 -Change Rationale

- R1: The <u>mission operation controller</u> shall transmit satellite status reports to the <u>user help desk</u> document repository.
- R2: The satellite management system shall provide users with the ability to transfer maintenance and service plans to the user help desk.
- R3: The mission operation controller shall transmit any detected anomalies with the user help desk.

Rationales:

 We want to globally rename "user help desk"
 Avoid communication between "mission operation controller" and "user help desk"
 We no longer want to "transmit satellite status reports" to "user help desk" but instead to "user document repository"

Solution Characteristics

Accounts for the phrasal structure of requirements

The mission operation controller shall transmit satellite status reports to the user help desk document repository.

user help desk, **Deleted** user document repository, Added

Solution Characteristics

Accounts for the phrasal structure of requirements

The mission operation controller shall transmit satellite status reports to the user help desk document repository.

user help desk, **Deleted** user document repository, **Added**

 Account for semantically-related phrases that are not exact matches and close syntactic variations

Approach

Approach

How effective is our approach?

- Extra requirements traversed
 - Case-A between 1%-7%
 - Case-B between 6%-8%
 except one case
- Number of impacted requirements missed: 1 out of 106

Requirements Change Impact Analysis on Design

Requirements-Design Traceability

- Capture the rationale of design decisions
- Support evolution, avoid violating essential design decisions
- Useful for impact analysis based on traces
- What is a rationale? Level of granularity?
- Design representation?

System Design Modeling

• Systems Modeling Language (SysML)

- A subset of UML extended with systems engineering diagrams
- A standard for systems engineering
- Preliminary support for requirement analysis and built-in traceability mechanism

CIA Automation Goal

- Given a change in a requirement, our goal is to compute a set of (potentially) impacted design elements that includes
 - all the actually impacted elements (high recall)
 - very few non-impacted elements (high precision)

Requirements Diagram

Internal Block Diagrams (IBD)

Internal Block Diagrams (IBD)

Activity Diagrams (AD)

Traceability Information Model

Traceability Information Model

Traceability Information Model

Our CIA Approach

Structural Analysis

Behavioral Analysis Natural Language Processing Analysis

Approach Change **Statements Process** $s_{11} \cdots s_{1n}$ Change · · · : $S_{n1} \cdots S_{nn}$ **Statements Similarity Phrases Matrix** Compute Sort **Build SysML** Impacted Ъ 59 50 **Elements Models Elements Estimated System Impact Set Requirements and Requirements Design Models Traceability Information Model** Sorted Nejati et al., "Automated Change Impact Analysis between SysML Models of Requirements and Design", **Elements**

ACM FSE 2016

Case Study

DELPHI

Innovation for the Real World

Electronic Variable Cam Phaser (CP)

- Includes mechanical, electronic and software components
- Adjusts the timing of cam lobes with respect to that of the crank shaft in an engine, while the engine is running.
- CP is safety-critical and subject to the ISO 26262 standard.

 We provided an approach to automatically identify the impact of requirements changes on system design

- We provided an approach to automatically identify the impact of requirements changes on system design
- Our approach includes:
 - A SysML modeling methodology with acceptable traceability cost
 - An algorithm for impact computation that combines models' structure, behavior and textual information

- We provided an approach to automatically identify the impact of requirements changes on system design
- Our approach includes:
 - A SysML modeling methodology with acceptable traceability cost
 - An algorithm for impact computation that combines models' structure, behavior and textual information
- Industrial case study: Our hybrid approach reduces the number of elements inspected from 370 to 18

- We provided an approach to automatically identify the impact of requirements changes on system design
- Our approach includes:
 - A SysML modeling methodology with acceptable traceability cost
 - An algorithm for impact computation that combines models' structure, behavior and textual information
- Industrial case study: Our hybrid approach reduces the number of elements inspected from 370 to 18
- Scalable approach: A few seconds to compute and rank estimated impacted elements

Conclusions

 In most cases, for many reasons, providing guidance to architects and developers does not seem to be a sufficient motivation to document requirements in a precise and complete form.

- In most cases, for many reasons, providing guidance to architects and developers does not seem to be a sufficient motivation to document requirements in a precise and complete form.
- We somehow need to increase the Rol of writing such requirements if we want practice to change.

- In most cases, for many reasons, providing guidance to architects and developers does not seem to be a sufficient motivation to document requirements in a precise and complete form.
- We somehow need to increase the Rol of writing such requirements if we want practice to change.
- We need to develop practical technologies that increase Rol

 Many opportunities: (1) Acceptance test automation, (2) Change impact analysis (e.g., for safety certification or regulatory compliance), (3) Automated QA, and more.

- Many opportunities: (1) Acceptance test automation, (2) Change impact analysis (e.g., for safety certification or regulatory compliance), (3) Automated QA, and more.
- With a focus on natural language requirements.

- Many opportunities: (1) Acceptance test automation, (2) Change impact analysis (e.g., for safety certification or regulatory compliance), (3) Automated QA, and more.
- With a focus on natural language requirements.
- With a high degree of robustness to unrestricted, flawed NL requirements

- Many opportunities: (1) Acceptance test automation, (2) Change impact analysis (e.g., for safety certification or regulatory compliance), (3) Automated QA, and more.
- With a focus on natural language requirements.
- With a high degree of robustness to unrestricted, flawed NL requirements
- Keeping in mind scalability

Requirements for AI Systems

Requirements for Al Systems

No source code from which to derive intent

Requirements for AI Systems

- No source code from which to derive intent
- Components for which precise functional requirements are difficult to express, e.g., pedestrian detection

Requirements for Al Systems

- No source code from which to derive intent
- Components for which precise functional requirements are difficult to express, e.g., pedestrian detection
- Safety, robustness, and security requirements are critical though ---their specification will increasingly be required by regulations

Requirements for AI Systems

- No source code from which to derive intent
- Components for which precise functional requirements are difficult to express, e.g., pedestrian detection
- Safety, robustness, and security requirements are critical though ---their specification will increasingly be required by regulations
- Operational Design domain must be specified (a form of requirement)

Requirements for Al Systems

- No source code from which to derive intent
- Components for which precise functional requirements are difficult to express, e.g., pedestrian detection
- Safety, robustness, and security requirements are critical though ---their specification will increasingly be required by regulations
- Operational Design domain must be specified (a form of requirement)
- There is an opportunity for impact here for the RE community!

Operational Design Domain

• An operational Design Domain (ODD) refers to the specific conditions under which a system or technology, like an Autonomous Vehicle (AV), is designed to function safely and efficiently.

An ODD includes characteristics such as:

- Geographic location: roads, highways, or regions where the system is intended to operate.
- Environmental conditions: weather and light conditions such as daytime, nighttime, fog, rain, or snow.
- Traffic conditions: types of other road users (vehicles, pedestrians, cyclists), traffic density, and road infrastructure.
- Operational constraints: legal restrictions, speed limits, or other rules that the system must adhere to

LLMs in Requirements Engineering

Vogelsang and Fishbach, "Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline", ArXiv, 2024

LLMs in Requirements Engineering

Requirements generation

Vogelsang and Fishbach, "Using Large Language Models for Natural Language Processing Tasks in Requirements Engineering: A Systematic Guideline", ArXiv, 2024
- Requirements generation
- Requirements completion

- Requirements generation
- Requirements completion
- Requirements to test cases

- Requirements generation
- Requirements completion
- Requirements to test cases
- Requirements classification

- Requirements generation
- Requirements completion
- Requirements to test cases
- Requirements classification

- Requirements generation
- Requirements completion
- Requirements to test cases
- Requirements classification

• May render automation more affordable and practical

Precise and Complete Requirements? An Elusive Goal

Lionel Briand

MO2RE 2024 Keynote

http://www.lbriand.info

Canada Chaires Research de recherche Chairs du Canada

LERO

SyMeCo Fellowship

- SyMeCo is a Marie Skłodowska-Curie postdoctoral fellowship programme coordinated by Lero
- Co-funded by Science Foundation Ireland and the EU
- 16 fellowships of 2-year duration based in Ireland across 8 Higher Education Institutions
- Open to researchers of any nationality

