
Precise and Complete Requirements?
An Elusive Goal

Lionel Briand

MO2RE 2024 Keynote

http://www.lbriand.info

http://www.lbriand.info/

Academic Assumptions

2

Academic Assumptions
• Effective software development

requires documented, precise,
complete requirements up-front.

2

Academic Assumptions
• Effective software development

requires documented, precise,
complete requirements up-front.

• Such requirements must remain
up-to-date all along development,
up to deployment, and after that
during system evolution.

2

Academic Assumptions
• Effective software development

requires documented, precise,
complete requirements up-front.

• Such requirements must remain
up-to-date all along development,
up to deployment, and after that
during system evolution.

• That sounds logical to many.
(except agile folks), and drives
(most of) academic research.

2

Quotes from Practice

3

Quotes from Practice

• “For many applications a highly detailed technical specification is just too much
up front since a quick discussion could render their carefully typeset document
useless. Instead, start with a vision. If everyone understands the overall picture
then the requirements can get filled in along the way through discussions.”

3

Quotes from Practice

• “For many applications a highly detailed technical specification is just too much
up front since a quick discussion could render their carefully typeset document
useless. Instead, start with a vision. If everyone understands the overall picture
then the requirements can get filled in along the way through discussions.”

• “Steve Jobs believed that customers cannot describe exactly what they want
the future products to look like, so it is your job to deliver them. So, unless you
deliver custom software all the time, forget formal specs and start by creating
prototypes…”

3

Quotes from Practice

• “For many applications a highly detailed technical specification is just too much
up front since a quick discussion could render their carefully typeset document
useless. Instead, start with a vision. If everyone understands the overall picture
then the requirements can get filled in along the way through discussions.”

• “Steve Jobs believed that customers cannot describe exactly what they want
the future products to look like, so it is your job to deliver them. So, unless you
deliver custom software all the time, forget formal specs and start by creating
prototypes…”

• “Unless you’re building something to a specification, you usually only have a
vague idea of what the final product should look like at the time you start a
project.”

3

Quotes from Practice

• “For many applications a highly detailed technical specification is just too much
up front since a quick discussion could render their carefully typeset document
useless. Instead, start with a vision. If everyone understands the overall picture
then the requirements can get filled in along the way through discussions.”

• “Steve Jobs believed that customers cannot describe exactly what they want
the future products to look like, so it is your job to deliver them. So, unless you
deliver custom software all the time, forget formal specs and start by creating
prototypes…”

• “Unless you’re building something to a specification, you usually only have a
vague idea of what the final product should look like at the time you start a
project.”

3

State of Practice

4

State of Practice
• In practice resources and time are limited,

uncertainty about requirements is high

4

State of Practice
• In practice resources and time are limited,

uncertainty about requirements is high

• Trade-offs are unavoidable

4

State of Practice
• In practice resources and time are limited,

uncertainty about requirements is high

• Trade-offs are unavoidable

• Often, requirements are subject to such trade-
offs, leading to imprecise, incomplete, or
obsolete (documented) requirements

4

State of Practice
• In practice resources and time are limited,

uncertainty about requirements is high

• Trade-offs are unavoidable

• Often, requirements are subject to such trade-
offs, leading to imprecise, incomplete, or
obsolete (documented) requirements

• Diversity: “RE practice differs according to the
types of organization developing software, the
types of products being developed, and the
particular application domain of the product.
“ (Lui et al. 2010)

4

Special Situations

5

Special Situations
• Requirements serve as a contract, to be

validated during acceptance testing

5

Special Situations
• Requirements serve as a contract, to be

validated during acceptance testing

• Requirements traceability is required
by standards or regulations, e.g., safety
critical systems

5

Special Situations
• Requirements serve as a contract, to be

validated during acceptance testing

• Requirements traceability is required
by standards or regulations, e.g., safety
critical systems

5

Enterprise Architect
Sparx Systems

Special Situations
• Requirements serve as a contract, to be

validated during acceptance testing

• Requirements traceability is required
by standards or regulations, e.g., safety
critical systems

• Even then, the precision and
completeness of requirements are often
elusive goals

5

Enterprise Architect
Sparx Systems

Special Situations
• Requirements serve as a contract, to be

validated during acceptance testing

• Requirements traceability is required
by standards or regulations, e.g., safety
critical systems

• Even then, the precision and
completeness of requirements are often
elusive goals

• The goal is only to achieve
certification/regulatory compliance

5

Enterprise Architect
Sparx Systems

Challenges: Liu et al. (2010)

6

Challenges: Liu et al. (2010)

• Customers do not have a clear understanding of system requirements
themselves, including scope of the system, major functional features and
nonfunctional attributes.

6

Challenges: Liu et al. (2010)

• Customers do not have a clear understanding of system requirements
themselves, including scope of the system, major functional features and
nonfunctional attributes.

• Users’ needs and understanding constantly change.

6

Challenges: Liu et al. (2010)

• Customers do not have a clear understanding of system requirements
themselves, including scope of the system, major functional features and
nonfunctional attributes.

• Users’ needs and understanding constantly change.

• Project schedule is too tight to allow sufficient interaction and learning
period between customer and development team.

6

Challenges: Liu et al. (2010)

• Customers do not have a clear understanding of system requirements
themselves, including scope of the system, major functional features and
nonfunctional attributes.

• Users’ needs and understanding constantly change.

• Project schedule is too tight to allow sufficient interaction and learning
period between customer and development team.

• Broken communication links between customer, analyst and developer.

6

Challenges: Liu et al. (2010)

• Customers do not have a clear understanding of system requirements
themselves, including scope of the system, major functional features and
nonfunctional attributes.

• Users’ needs and understanding constantly change.

• Project schedule is too tight to allow sufficient interaction and learning
period between customer and development team.

• Broken communication links between customer, analyst and developer.

6

Liu et al., “Why Requirements Engineering Fails: A Survey Report from China”, IEEE RE 2010

Recommendations: Liu et al.

7

Recommendations: Liu et al.

• Link requirements with testing and adopt a test-driven design
process.

7

Recommendations: Liu et al.

• Link requirements with testing and adopt a test-driven design
process.

• Develop RE tools that better fit the real-world needs of the
customers and engineers.

7

Challenges: Martins and
Gorschek (2020)

8

Challenges: Martins and
Gorschek (2020)

• Focus on safety-critical systems, where precise and complete requirements are
expected to be most common.

8

Challenges: Martins and
Gorschek (2020)

• Focus on safety-critical systems, where precise and complete requirements are
expected to be most common.

• All companies write their requirements documents in natural language. UML
diagrams and other types of diagrams (as FTA and flowchart) are seldom used to
describe the requirements.

8

Challenges: Martins and
Gorschek (2020)

• Focus on safety-critical systems, where precise and complete requirements are
expected to be most common.

• All companies write their requirements documents in natural language. UML
diagrams and other types of diagrams (as FTA and flowchart) are seldom used to
describe the requirements.

• Two companies used “formal methods”, but not from software engineering:
Equations from control engineering

8

Challenges: Martins and
Gorschek (2020)

• Focus on safety-critical systems, where precise and complete requirements are
expected to be most common.

• All companies write their requirements documents in natural language. UML
diagrams and other types of diagrams (as FTA and flowchart) are seldom used to
describe the requirements.

• Two companies used “formal methods”, but not from software engineering:
Equations from control engineering

• 61% use word processing and spreadsheets as RE tools

8

Challenges: Martins and
Gorschek (2020)

• Focus on safety-critical systems, where precise and complete requirements are
expected to be most common.

• All companies write their requirements documents in natural language. UML
diagrams and other types of diagrams (as FTA and flowchart) are seldom used to
describe the requirements.

• Two companies used “formal methods”, but not from software engineering:
Equations from control engineering

• 61% use word processing and spreadsheets as RE tools

8

Martins and Gorschek, “Requirements Engineering for Safety-Critical Systems: An Interview Study with Industry
Practitioners”, IEEE TSE 2020

Challenges: Martins and
Gorschek (2020)

9

Challenges: Martins and
Gorschek (2020)

• “When someone does not understand a requirement a person conversation is
performed, usually people go to the team leader, systems engineers or safety
engineer to get the understanding. This is done in an informal way.“

9

Challenges: Martins and
Gorschek (2020)

• “When someone does not understand a requirement a person conversation is
performed, usually people go to the team leader, systems engineers or safety
engineer to get the understanding. This is done in an informal way.“

• “Practitioners from three companies mentioned that somehow it is necessary to
produce more useful documents in order to meet the daily needs of the system
developers. It seems that the requirements documents still are more to show
compliance than to be really used by development teams.“

9

Challenges: Martins and
Gorschek (2020)

• “When someone does not understand a requirement a person conversation is
performed, usually people go to the team leader, systems engineers or safety
engineer to get the understanding. This is done in an informal way.“

• “Practitioners from three companies mentioned that somehow it is necessary to
produce more useful documents in order to meet the daily needs of the system
developers. It seems that the requirements documents still are more to show
compliance than to be really used by development teams.“

• “The designers and programmers know what to do, of course the requirements
specification is there to drive it, but in details it is very common that the
requirements don’t really drive the designers/programmers.”

9

Factors Affecting Practice

10

Factors Affecting Practice

• Lack of skills, training (often invoked by academics)

10

Factors Affecting Practice

• Lack of skills, training (often invoked by academics)

• Frequent requirements changes, uncertainty

10

Factors Affecting Practice

• Lack of skills, training (often invoked by academics)

• Frequent requirements changes, uncertainty

• Time pressure, lack of resources

10

Factors Affecting Practice

• Lack of skills, training (often invoked by academics)

• Frequent requirements changes, uncertainty

• Time pressure, lack of resources

• Lack of adequate tool support and automation

10

Factors Affecting Practice

• Lack of skills, training (often invoked by academics)

• Frequent requirements changes, uncertainty

• Time pressure, lack of resources

• Lack of adequate tool support and automation

• Result: Low return on investment (RoI) for precise, complete
requirements (real or perceived?)

10

Widespread Situation

11

Widespread Situation

• Informal, natural language requirements

11

Widespread Situation

• Informal, natural language requirements

• Sometimes completed with informal diagrams (UML, SysML
…)

11

Widespread Situation

• Informal, natural language requirements

• Sometimes completed with informal diagrams (UML, SysML
…)

• Quality (precision, completeness, …) is relatively low

11

My Take

12

My Take

• Higher RoI for precise requirements would require effective
support for:

• Quality assurance

• Change management

• Traceability (e.g., to systems tests)

12

My Take

• Higher RoI for precise requirements would require effective
support for:

• Quality assurance

• Change management

• Traceability (e.g., to systems tests)

• Example projects next

12

Three Essential Technologies

• NL requirements QA

• NL requirements change impact (CI) analysis

• NL Requirements-driven acceptance testing

13

Requirements Quality
Assurance

14

Requirements QA

15

Requirements QA

• Manual QA is expensive and tedious

15

Requirements QA

• Manual QA is expensive and tedious

• Especially in the context of frequent changes

15

Requirements QA

• Manual QA is expensive and tedious

• Especially in the context of frequent changes

• No systematic feedback

15

Requirements QA

• Manual QA is expensive and tedious

• Especially in the context of frequent changes

• No systematic feedback

• Leads to low quality requirements

15

Requirements QA

• Manual QA is expensive and tedious

• Especially in the context of frequent changes

• No systematic feedback

• Leads to low quality requirements

• Example project in the financial domain

15

Industrial Context and Artifacts

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

• Loosely follows the Rupp template

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

• Loosely follows the Rupp template

• 13 Software Requirements Specifications (SRS)

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

• Loosely follows the Rupp template

• 13 Software Requirements Specifications (SRS)

• 2725 requirements

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

• Loosely follows the Rupp template

• 13 Software Requirements Specifications (SRS)

• 2725 requirements

• Written by different business analysts

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

• Loosely follows the Rupp template

• 13 Software Requirements Specifications (SRS)

• 2725 requirements

• Written by different business analysts

• Relatively low quality, not used for validation

16

Industrial Context and Artifacts
• Global leading supplier of post-trading services

• 2500 customers in 110 countries

• Compliance with financial regulations

• Loosely follows the Rupp template

• 13 Software Requirements Specifications (SRS)

• 2725 requirements

• Written by different business analysts

• Relatively low quality, not used for validation

16

Controlled Natural Language:
Rimay

17

Controlled Natural Language:
Rimay

• Strike a balance between the usability of NL and the rigor of formal languages

17

Controlled Natural Language:
Rimay

• Strike a balance between the usability of NL and the rigor of formal languages
• More specialized concepts and constructs than conventional templates

17

Controlled Natural Language:
Rimay

• Strike a balance between the usability of NL and the rigor of formal languages
• More specialized concepts and constructs than conventional templates
• Qualitative analysis

17

Controlled Natural Language:
Rimay

• Strike a balance between the usability of NL and the rigor of formal languages
• More specialized concepts and constructs than conventional templates
• Qualitative analysis
• Evaluation

17

Controlled Natural Language:
Rimay

• Strike a balance between the usability of NL and the rigor of formal languages
• More specialized concepts and constructs than conventional templates
• Qualitative analysis
• Evaluation

17

REQUIREMENT: SCOPE? CONDITION_STRUCTURE?
 ARTICLE? ACTOR MODAL_VERB not? SYSTEM_RESPONSE.

SCOPE: For MODIFIER? TEXT (and MODIFIER? TEXT),
SYSTEM RESPONSE: VALIDATE | ... 47 action phrases

Veziaga et al., “On systematically building a controlled natural language
for functional requirements.”, Empir. Softw. Eng. 26(4): 79 (2021)

Controlled Natural Language:
Rimay

• Strike a balance between the usability of NL and the rigor of formal languages
• More specialized concepts and constructs than conventional templates
• Qualitative analysis
• Evaluation

17

REQUIREMENT: SCOPE? CONDITION_STRUCTURE?
 ARTICLE? ACTOR MODAL_VERB not? SYSTEM_RESPONSE.

SCOPE: For MODIFIER? TEXT (and MODIFIER? TEXT),
SYSTEM RESPONSE: VALIDATE | ... 47 action phrases

Veziaga et al., “On systematically building a controlled natural language
for functional requirements.”, Empir. Softw. Eng. 26(4): 79 (2021)

Quality Attributes

18

• Quality attributes enforced by Rimay
• Completeness: Presence of all the information required for the requirement

to be complete

• Correctness: Presence of correct information content in the correct order of
appearance

• Clarity: Usage of structures, phrases, and words that are free of ambiguity

• Atomic requirements: A requirement with a single system function

Smells
• 10 smells: “1. Non atomic”, “2. Incomplete requirement”, “3. Incorrect order

requirement”, “4. Coordination ambiguity”, “5. Not requirement”, “6. Incomplete
condition”, “7. Incomplete system response”, “8. Incomplete scope”, “9. Passive
voice”, and “10. Not precise verb”

19

Rimay Patterns

20

Requirement

Condition_Structure Modal_Verb Action_Phrase

If_Structure …

Actor

Precondition

0..*

1..*

11 1..*+System_Response

• Excerpt of the Rimay conceptual model:

• Example:

Rimay Patterns

21

Rimay Patterns

• 10 Rimay patterns: “1. Scope and system response”, “2. Scope, condition
(precondition), and system response”, “3. Scope, condition(Trigger), and
system response”, “4. Scope, condition (Time) and system response”, “5.
System response”, “6. Condition(Precondition), and system response”, “7.
Condition(Trigger), and system response”, “8. Condition (Time) and system
response”, “9. Scope, multiple conditions, and system response”, “10.
Multiple conditions, and system response”

21

Rimay Patterns

• 10 Rimay patterns: “1. Scope and system response”, “2. Scope, condition
(precondition), and system response”, “3. Scope, condition(Trigger), and
system response”, “4. Scope, condition (Time) and system response”, “5.
System response”, “6. Condition(Precondition), and system response”, “7.
Condition(Trigger), and system response”, “8. Condition (Time) and system
response”, “9. Scope, multiple conditions, and system response”, “10.
Multiple conditions, and system response”

• Pattern Name: System response

21

Rimay Patterns

• 10 Rimay patterns: “1. Scope and system response”, “2. Scope, condition
(precondition), and system response”, “3. Scope, condition(Trigger), and
system response”, “4. Scope, condition (Time) and system response”, “5.
System response”, “6. Condition(Precondition), and system response”, “7.
Condition(Trigger), and system response”, “8. Condition (Time) and system
response”, “9. Scope, multiple conditions, and system response”, “10.
Multiple conditions, and system response”

• Pattern Name: System response

• Rimay Pattern: The? Actor must <Action> (every "Text")?

21

Rimay Patterns

• 10 Rimay patterns: “1. Scope and system response”, “2. Scope, condition
(precondition), and system response”, “3. Scope, condition(Trigger), and
system response”, “4. Scope, condition (Time) and system response”, “5.
System response”, “6. Condition(Precondition), and system response”, “7.
Condition(Trigger), and system response”, “8. Condition (Time) and system
response”, “9. Scope, multiple conditions, and system response”, “10.
Multiple conditions, and system response”

• Pattern Name: System response

• Rimay Pattern: The? Actor must <Action> (every "Text")?

• Example: The System-A must link "allegement message-A" to the
"outgoing message-123"

21

QA Approach: Paska

22

Veziaga et al., “Automated Smell Detection and
Recommendation in Natural Language Requirements.”, IEEE
TSE (2024)

QA Approach: Paska
1. Apply preprocessing

steps to requirements

22

Veziaga et al., “Automated Smell Detection and
Recommendation in Natural Language Requirements.”, IEEE
TSE (2024)

QA Approach: Paska
1. Apply preprocessing

steps to requirements

2. Divide requirements into
scope, condition and
system response

22

Veziaga et al., “Automated Smell Detection and
Recommendation in Natural Language Requirements.”, IEEE
TSE (2024)

QA Approach: Paska
1. Apply preprocessing

steps to requirements

2. Divide requirements into
scope, condition and
system response

3. Identify smells present in
requirements

22

Veziaga et al., “Automated Smell Detection and
Recommendation in Natural Language Requirements.”, IEEE
TSE (2024)

QA Approach: Paska
1. Apply preprocessing

steps to requirements

2. Divide requirements into
scope, condition and
system response

3. Identify smells present in
requirements

4. Suggest a Rimay pattern
to fix detected smells

22

Veziaga et al., “Automated Smell Detection and
Recommendation in Natural Language Requirements.”, IEEE
TSE (2024)

Paska: Evaluation

23

Paska: Evaluation

• Evaluation on unseen SRSs

23

Paska: Evaluation

• Evaluation on unseen SRSs

• Many instances of smells

23

Paska: Evaluation

• Evaluation on unseen SRSs

• Many instances of smells

• Overall precision and recall of 89% in detecting smells

23

Paska: Evaluation

• Evaluation on unseen SRSs

• Many instances of smells

• Overall precision and recall of 89% in detecting smells

• Overall precision of 96% and recall of 94% in suggesting Rimay patterns

23

Paska: Evaluation

• Evaluation on unseen SRSs

• Many instances of smells

• Overall precision and recall of 89% in detecting smells

• Overall precision of 96% and recall of 94% in suggesting Rimay patterns

• Based on the pattern it is straightforward to fix a requirement

23

Paska: Evaluation

• Evaluation on unseen SRSs

• Many instances of smells

• Overall precision and recall of 89% in detecting smells

• Overall precision of 96% and recall of 94% in suggesting Rimay patterns

• Based on the pattern it is straightforward to fix a requirement

• Promising tool for automated QA of natural language requirements for information
systems

23

Paska: Evaluation

• Evaluation on unseen SRSs

• Many instances of smells

• Overall precision and recall of 89% in detecting smells

• Overall precision of 96% and recall of 94% in suggesting Rimay patterns

• Based on the pattern it is straightforward to fix a requirement

• Promising tool for automated QA of natural language requirements for information
systems

23

Acceptance Testing Driven
by Use Case Specifications

24

Acceptance Testing

25

Acceptance Testing

• Acceptance testing from requirements

25

Acceptance Testing

• Acceptance testing from requirements

• Systematically Identifying and designing test scenarios

25

Acceptance Testing

• Acceptance testing from requirements

• Systematically Identifying and designing test scenarios

• Overcome biases and blind spots

25

Acceptance Testing

• Acceptance testing from requirements

• Systematically Identifying and designing test scenarios

• Overcome biases and blind spots

• Traceability requirements – system tests often required

25

Test Cases from Use Cases

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

• Manual and laborious task

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

• Manual and laborious task

• Context: Automotive software.

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

• Manual and laborious task

• Context: Automotive software.

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

• Manual and laborious task

• Context: Automotive software.

• Use cases were a basis for contractual agreements

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

• Manual and laborious task

• Context: Automotive software.

• Use cases were a basis for contractual agreements

• Automation based on NLP: UMTG

26

Test Cases from Use Cases

• Test case descriptions from use case descriptions

• Use case specifications are common and operational representations of
requirements

• Manual and laborious task

• Context: Automotive software.

• Use cases were a basis for contractual agreements

• Automation based on NLP: UMTG

26

Use Case
Specifications

(RUCM)

Executable Test Cases

Constraints capturing
the meaning of

conditionsDomain
Model

UMTG

Error.allInstances()
->forAll(i | i.isDetected = false)

UMTG

https://sntsvv.github.io/UMTG/
Wang et al., “Automatic Generation of
Acceptance Test Cases From Use Case
Specifications: An NLP-Based Approach”, IEEE
TSE, 2020

https://sntsvv.github.io/UMTG/

• Restricted Use Case Modeling (RUCM)

• Experiments shows it yields better use cases

• Compliance is tool-supported (NLP)

• More analyzable with NLP
Yue et al., ACM TOSEM 2013

Restricted Use Case
Specifications

28

RUCM Specifications Example
Precondition: The system has been initialized
 Basic Flow
1. The SeatSensor SENDS the weight TO the system.
2. INCLUDE USE CASE Self Diagnosis.
3. The system VALIDATES THAT no error has been detected.
4. The system VALIDATES THAT the weight is above 20 Kg.
5. The system sets the occupancy status to adult.
6. The system SENDS the occupancy status TO AirbagControlUnit.

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

INTERNAL STEP

OUTPUT STEP
 Alternative Flow
RFS 4.
1. IF the weight is above 1 Kg THEN

2. The system sets the occupancy status to child.
3. …
4. RESUME STEP 6. 29

UMTG Steps

30

UMTG: Empirical Evaluation

31

UMTG: Empirical Evaluation

• It is hard for engineers to capture all the possible scenarios
involving error conditions. UMTG covers them.

31

UMTG: Empirical Evaluation

• It is hard for engineers to capture all the possible scenarios
involving error conditions. UMTG covers them.

• 5 to 10 minutes to write each constraints (but we also developed a
tool to generate them)

31

UMTG: Empirical Evaluation

• It is hard for engineers to capture all the possible scenarios
involving error conditions. UMTG covers them.

• 5 to 10 minutes to write each constraints (but we also developed a
tool to generate them)

• 10 secs/test case using a constraint solver based on Alloy

31

UMTG: Empirical Evaluation

• It is hard for engineers to capture all the possible scenarios
involving error conditions. UMTG covers them.

• 5 to 10 minutes to write each constraints (but we also developed a
tool to generate them)

• 10 secs/test case using a constraint solver based on Alloy

• Less than 10 minutes in total to generate all system test cases (54)

31

UMTG: Empirical Evaluation

• It is hard for engineers to capture all the possible scenarios
involving error conditions. UMTG covers them.

• 5 to 10 minutes to write each constraints (but we also developed a
tool to generate them)

• 10 secs/test case using a constraint solver based on Alloy

• Less than 10 minutes in total to generate all system test cases (54)

31

Inter-Requirements Change
Impact Analysis

32

Traceability

33

Traceability
• The ability to follow the life of software artifacts, in both a backward and

forward direction, e.g., requirements, design decisions, test cases.

33

Traceability
• The ability to follow the life of software artifacts, in both a backward and

forward direction, e.g., requirements, design decisions, test cases.

• Requirements traceability: Trace a requirement from its emergence to its
fulfillment, e.g., acceptance test cases.

33

Traceability
• The ability to follow the life of software artifacts, in both a backward and

forward direction, e.g., requirements, design decisions, test cases.

• Requirements traceability: Trace a requirement from its emergence to its
fulfillment, e.g., acceptance test cases.

• Motivations:

• Understand rationale

• Certification, auditing, compliance with standards

• Assess impact of change

33

Traceability between
Requirements

• Natural language

• Sometimes structured (template)

• Hundreds of traces

• Domain terminology, concepts, and their relationships are key to discovering traces
among requirements

• Rely on syntactic and semantic similarity measures

34

Requirements

Requirements-Requirements

35

Requirements

Cas
e-A

• 160 Requirements
• 9 change scenarios

Cas
e-B

• 72 Requirements
• 5 change scenarios

[RE 2015, TSE 2015, ESEM 2014, ESEM 2013]

Example

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

36

Change Example

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

37

Challenge#1 -

Capture Changes Precisely

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

38

Challenge#2 -
Capture Change Rationale

• R1: The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

• R2: The satellite management system shall provide users with
the ability to transfer maintenance and service plans to the
user help desk.

• R3: The mission operation controller shall transmit any
detected anomalies with the user help desk.

39

• R1: The mission operation controller shall transmit satellite status reports to the user help desk
document repository.

• R2: The satellite management system shall provide users with the ability to transfer maintenance
and service plans to the user help desk.

• R3: The mission operation controller shall transmit any detected anomalies with the user help desk.

40

Challenge#2 -
Change Rationale

Rationales:

1: We want to globally rename “user help desk”
2: Avoid communication between “mission
operation controller” and “user help desk”
3: We no longer want to “transmit satellite status
reports” to “user help desk” but instead to “user
document repository”

Solution Characteristics

• Accounts for the phrasal structure of requirements

41

The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

user help desk, Deleted
user document repository, Added

Solution Characteristics

• Accounts for the phrasal structure of requirements

41

The mission operation controller shall transmit satellite
status reports to the user help desk document repository.

user help desk, Deleted
user document repository, Added

• Account for semantically-related phrases that are not exact
matches and close syntactic variations

Approach

42

Arora et al., “Change Impact Analysis for
Natural Language Requirements: An NLP
Approach”, IEEE RE, 2015

Approach

43

Arora et al., “Change Impact Analysis for
Natural Language Requirements: An NLP
Approach”, IEEE RE, 2015

Approach

43

Rationale:
Avoid communication between mission operation

controller and user help desk.

Propagation condition:
mission operation controller AND user help desk

AND transmit

Arora et al., “Change Impact Analysis for
Natural Language Requirements: An NLP
Approach”, IEEE RE, 2015

How effective is our approach?

• Extra requirements traversed

• Case-A between 1%-7%

• Case-B between 6%-8%
except one case

• Number of impacted
requirements missed:
1 out of 106

44

Requirements Change
Impact Analysis on Design

45

Requirements-Design
Traceability

• Capture the rationale of design decisions

• Support evolution, avoid violating essential design decisions

• Useful for impact analysis based on traces

• What is a rationale? Level of granularity?

• Design representation?

46

Archi. & DesignRequirements

System Design Modeling

• Systems Modeling Language (SysML)

• A subset of UML extended with systems engineering diagrams

• A standard for systems engineering

• Preliminary support for requirement analysis and built-in traceability
mechanism

47

CIA Automation Goal

• Given a change in a requirement, our goal is to compute a set
of (potentially) impacted design elements that includes

• all the actually impacted elements (high recall)

• very few non-impacted elements (high precision)

48

Requirements Diagram

49

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Internal Block Diagrams (IBD)

:Over-Temperature
Monitor

:Diagnostics
Manager

:Diagnostics and
Status Signal
Generation

:Digital to Analog
Converter

:DC Motor
Controller:Temperature

Processor

<<requirement>>
Over-Temperature

Detection
(R11)

<<requirement>>
Operational

Temperature Range
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Internal Block Diagrams (IBD)

• IBDs contain SW and HW blocks, ports,
connector relations between ports, plus
Satisfy traceability links between
requirements and blocks.

• A satisfy link between a block and a
requirement indicates that the function
implemented by the block contributes to
the satisfaction of the requirement.

Diagnostics Manager

<<Decision>>
Is position valid?

<<Decision>>
Over-Temperature

detected?

<<Assignment>>
Error = 1

B3

<<Assignment>>
MotorDriveMode = OFF

<<Assignment>>
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Activity Diagrams (AD)

Traceability Information Model

53

Traceability Information Model

53

Explicit
traceability links

Traceability Information Model

53

Explicit
traceability links

Our CIA Approach

54

Structural
Analysis

Behavioral
Analysis

Natural
Language
Processing

Analysis

Approach

55

Build SysML
Models

System
Requirements

Traceability
Information Model

Requirements and
Design Models

Estimated
Impact Set

Compute
Impacted
Elements

Change
Statements

Phrases
Similarity

Matrix

Process
Change

Statements

Sort
Elements

Sorted
Elements

Nejati et al., “Automated Change Impact Analysis
between SysML Models of Requirements and Design”,
ACM FSE 2016

Case Study

56

Electronic Variable Cam Phaser (CP)

• Includes mechanical,
electronic and software
components

• Adjusts the timing of cam
lobes with respect to that
of the crank shaft in an
engine, while the engine is
running.

• CP is safety-critical and
subject to the ISO 26262
standard.

Summary

57

Summary
• We provided an approach to automatically identify the impact of requirements changes on

system design

57

Summary
• We provided an approach to automatically identify the impact of requirements changes on

system design

• Our approach includes:

• A SysML modeling methodology with acceptable traceability cost

• An algorithm for impact computation that combines models’ structure, behavior and
textual information

57

Summary
• We provided an approach to automatically identify the impact of requirements changes on

system design

• Our approach includes:

• A SysML modeling methodology with acceptable traceability cost

• An algorithm for impact computation that combines models’ structure, behavior and
textual information

• Industrial case study: Our hybrid approach reduces the number of elements inspected from
370 to 18

57

Summary
• We provided an approach to automatically identify the impact of requirements changes on

system design

• Our approach includes:

• A SysML modeling methodology with acceptable traceability cost

• An algorithm for impact computation that combines models’ structure, behavior and
textual information

• Industrial case study: Our hybrid approach reduces the number of elements inspected from
370 to 18

• Scalable approach: A few seconds to compute and rank estimated impacted elements

57

Conclusions

58

Main Takeaway Message

59

Main Takeaway Message

• In most cases, for many reasons, providing guidance to
architects and developers does not seem to be a sufficient
motivation to document requirements in a precise and
complete form.

59

Main Takeaway Message

• In most cases, for many reasons, providing guidance to
architects and developers does not seem to be a sufficient
motivation to document requirements in a precise and
complete form.

• We somehow need to increase the RoI of writing such
requirements if we want practice to change.

59

Main Takeaway Message

• In most cases, for many reasons, providing guidance to
architects and developers does not seem to be a sufficient
motivation to document requirements in a precise and
complete form.

• We somehow need to increase the RoI of writing such
requirements if we want practice to change.

• We need to develop practical technologies that increase RoI

59

A Way Forward

60

A Way Forward

• Many opportunities: (1) Acceptance test automation, (2)
Change impact analysis (e.g., for safety certification or
regulatory compliance), (3) Automated QA, and more.

60

A Way Forward

• Many opportunities: (1) Acceptance test automation, (2)
Change impact analysis (e.g., for safety certification or
regulatory compliance), (3) Automated QA, and more.

• With a focus on natural language requirements.

60

A Way Forward

• Many opportunities: (1) Acceptance test automation, (2)
Change impact analysis (e.g., for safety certification or
regulatory compliance), (3) Automated QA, and more.

• With a focus on natural language requirements.

• With a high degree of robustness to unrestricted, flawed NL
requirements

60

A Way Forward

• Many opportunities: (1) Acceptance test automation, (2)
Change impact analysis (e.g., for safety certification or
regulatory compliance), (3) Automated QA, and more.

• With a focus on natural language requirements.

• With a high degree of robustness to unrestricted, flawed NL
requirements

• Keeping in mind scalability
60

Requirements for AI Systems

61

Requirements for AI Systems
• No source code from which to derive intent

61

Requirements for AI Systems
• No source code from which to derive intent

• Components for which precise functional requirements are difficult to
express, e.g., pedestrian detection

61

Requirements for AI Systems
• No source code from which to derive intent

• Components for which precise functional requirements are difficult to
express, e.g., pedestrian detection

• Safety, robustness, and security requirements are critical though ---
their specification will increasingly be required by regulations

61

Requirements for AI Systems
• No source code from which to derive intent

• Components for which precise functional requirements are difficult to
express, e.g., pedestrian detection

• Safety, robustness, and security requirements are critical though ---
their specification will increasingly be required by regulations

• Operational Design domain must be specified (a form of requirement)

61

Requirements for AI Systems
• No source code from which to derive intent

• Components for which precise functional requirements are difficult to
express, e.g., pedestrian detection

• Safety, robustness, and security requirements are critical though ---
their specification will increasingly be required by regulations

• Operational Design domain must be specified (a form of requirement)

• There is an opportunity for impact here for the RE community!

61

Operational Design Domain
• An operational Design Domain (ODD) refers to the specific conditions under

which a system or technology, like an Autonomous Vehicle (AV), is designed to
function safely and efficiently.

An ODD includes characteristics such as:

• Geographic location: roads, highways, or regions where the system is intended
to operate.

• Environmental conditions: weather and light conditions such as daytime,
nighttime, fog, rain, or snow.

• Traffic conditions: types of other road users (vehicles, pedestrians, cyclists),
traffic density, and road infrastructure.

• Operational constraints: legal restrictions, speed limits, or other rules that the
system must adhere to

62

LLMs in Requirements
Engineering

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

LLMs in Requirements
Engineering

• Requirements generation

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

LLMs in Requirements
Engineering

• Requirements generation

• Requirements completion

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

LLMs in Requirements
Engineering

• Requirements generation

• Requirements completion

• Requirements to test cases

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

LLMs in Requirements
Engineering

• Requirements generation

• Requirements completion

• Requirements to test cases

• Requirements classification

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

LLMs in Requirements
Engineering

• Requirements generation

• Requirements completion

• Requirements to test cases

• Requirements classification

• …

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

LLMs in Requirements
Engineering

• Requirements generation

• Requirements completion

• Requirements to test cases

• Requirements classification

• …

• May render automation more
affordable and practical

63

Vogelsang and Fishbach, “Using Large
Language Models for Natural Language
Processing Tasks in Requirements Engineering:
A Systematic Guideline”, ArXiv, 2024

Precise and Complete Requirements?
An Elusive Goal

Lionel Briand

MO2RE 2024 Keynote

http://www.lbriand.info

http://www.lbriand.info/

SyMeCo Fellowship
• SyMeCo is a Marie Skłodowska-Curie postdoctoral fellowship

programme coordinated by Lero

• Co-funded by Science Foundation Ireland and the EU

• 16 fellowships of 2-year duration based in Ireland across 8
Higher Education Institutions

• Open to researchers of any nationality

