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Academic Assumptions
• Effective software development 

requires documented, precise, 
complete requirements up-front.

• Such requirements must remain 
up-to-date all along development, 
up to deployment, and after that 
during system evolution.

• That sounds logical to many. 
(except agile folks), and drives 
(most of) academic research.
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State of Practice
• In practice resources and time are limited, 

uncertainty about requirements is high

• Trade-offs are unavoidable

• Often, requirements are subject to such trade-
offs, leading to imprecise, incomplete, or 
obsolete (documented) requirements

• Diversity: “RE practice differs according to the 
types of organization developing software, the 
types of products being developed, and the 
particular application domain of the product. 
“ (Lui et al. 2010)
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Special Situations
• Requirements serve as a contract, to be 

validated during acceptance testing

• Requirements traceability is required 
by standards or regulations, e.g., safety 
critical systems

• Even then, the precision and 
completeness of requirements are often 
elusive goals

• The goal is only to achieve 
certification/regulatory compliance

5

Enterprise Architect 
Sparx Systems 
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themselves, including scope of the system, major functional features and 
nonfunctional attributes. 

•  Users’ needs and understanding constantly change. 

•  Project schedule is too tight to allow sufficient interaction and learning 
period between customer and  development team. 

•  Broken communication links between customer, analyst and developer. 

6

Liu et al., “Why Requirements Engineering Fails: A Survey Report from China”, IEEE RE 2010 



Recommendations: Liu et al. 

7



Recommendations: Liu et al. 

•  Link requirements with testing and adopt a test-driven design 
process. 

7



Recommendations: Liu et al. 

•  Link requirements with testing and adopt a test-driven design 
process. 

•  Develop RE tools that better fit the real-world needs of the 
customers and engineers. 
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Martins and Gorschek, “Requirements Engineering for Safety-Critical Systems: An Interview Study with Industry 
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Gorschek (2020)

• “When someone does not understand a requirement a person conversation is 
performed, usually people go to the team leader, systems engineers or safety 
engineer to get the understanding. This is done in an informal way.“ 

• “Practitioners from three companies mentioned that somehow it is necessary to 
produce more useful documents in order to meet the daily needs of the system 
developers. It seems that the requirements documents still are more to show 
compliance than to be really used by development teams.“ 

• “The designers and programmers know what to do, of course the requirements 
specification is there to drive it, but in details it is very common that the 
requirements don’t really drive the designers/programmers.” 
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Factors Affecting Practice

• Lack of skills, training (often invoked by academics)

• Frequent requirements changes, uncertainty

• Time pressure, lack of resources

• Lack of adequate tool support and automation

• Result: Low return on investment (RoI) for precise, complete 
requirements (real or perceived?) 
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Widespread Situation

• Informal, natural language requirements

• Sometimes completed with informal diagrams (UML, SysML 
…)

• Quality (precision, completeness, …) is relatively low
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• Higher RoI for precise requirements would require effective 
support for: 

• Quality assurance 

• Change management 

• Traceability (e.g., to systems tests)

• Example projects next
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Three Essential Technologies

• NL requirements QA 

• NL requirements change impact (CI) analysis  

• NL Requirements-driven acceptance testing
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Requirements QA

• Manual QA is expensive and tedious

• Especially in the context of frequent changes

• No systematic feedback 

• Leads to low quality requirements

• Example project in the financial domain
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Quality Attributes

18

• Quality attributes enforced by Rimay 
• Completeness: Presence of all the information required for the requirement 

to be complete 

• Correctness: Presence of correct information content in the correct order of 
appearance  

• Clarity: Usage of structures, phrases, and words that are free of ambiguity 

• Atomic requirements: A requirement with a single system function 



Smells
• 10 smells: “1. Non atomic”, “2. Incomplete requirement”, “3. Incorrect order 

requirement”, “4. Coordination ambiguity”, “5. Not requirement”, “6. Incomplete 
condition”, “7. Incomplete system response”, “8. Incomplete scope”, “9. Passive 
voice”, and “10. Not precise verb” 

19



Rimay Patterns
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Requirement

Condition_Structure Modal_Verb Action_Phrase

If_Structure …

Actor

Precondition

0..*

1..*

11 1..*+System_Response

• Excerpt of the Rimay conceptual model:  

• Example: 
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Rimay Patterns

• 10 Rimay patterns: “1. Scope and system response”, “2. Scope, condition 
(precondition), and system response”, “3. Scope, condition(Trigger), and 
system response”, “4. Scope, condition (Time) and system response”, “5. 
System response”, “6. Condition(Precondition), and system response”, “7. 
Condition(Trigger), and system response”, “8. Condition (Time) and system 
response”, “9. Scope, multiple conditions, and system response”, “10. 
Multiple conditions, and system response”

• Pattern Name: System response

• Rimay Pattern: The? Actor must <Action> (every "Text")?

• Example: The System-A must link "allegement message-A" to the 
"outgoing message-123"
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QA Approach: Paska
1. Apply preprocessing 

steps to requirements

2. Divide requirements into 
scope, condition and 
system response

3. Identify smells present in 
requirements

4. Suggest a Rimay pattern 
to fix detected smells

22

Veziaga et al., “Automated Smell Detection and 
Recommendation in Natural Language Requirements.”, IEEE 
TSE (2024)
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Acceptance Testing

• Acceptance testing from requirements

• Systematically Identifying and designing test scenarios

• Overcome biases and blind spots

• Traceability requirements – system tests often required
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Use Case  
Specifications 

(RUCM)

Executable Test Cases

Constraints capturing 
the meaning of  

conditionsDomain  
Model

UMTG

Error.allInstances() 
->forAll( i | i.isDetected = false) 

UMTG 

https://sntsvv.github.io/UMTG/
Wang et al., “Automatic Generation of 
Acceptance Test Cases From Use Case 
Specifications: An NLP-Based Approach”, IEEE 
TSE, 2020

https://sntsvv.github.io/UMTG/


• Restricted Use Case Modeling (RUCM) 

• Experiments shows it yields better use cases 

• Compliance is tool-supported (NLP) 

• More analyzable with NLP
Yue et al., ACM TOSEM 2013

Restricted Use Case 
Specifications

28



RUCM Specifications Example
Precondition: The system has been initialized 
 Basic Flow 
1. The SeatSensor SENDS the weight TO the system. 
2. INCLUDE USE CASE Self Diagnosis.  
3. The system VALIDATES THAT no error has been detected. 
4. The system VALIDATES THAT the weight is above 20 Kg. 
5. The system sets the occupancy status to adult.  
6. The system SENDS the occupancy status TO AirbagControlUnit. 

INPUT STEP

INCLUDE STEP

CONDITIONAL STEP

INTERNAL STEP

OUTPUT STEP
 Alternative Flow 
RFS 4. 
1. IF the weight is above 1 Kg THEN 

2. The system sets the occupancy status to child.  
3. … 
4. RESUME STEP 6. 29



UMTG Steps
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Inter-Requirements Change 
Impact Analysis
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Traceability
• The ability to follow the life of software artifacts, in both a backward and 

forward direction, e.g., requirements, design decisions, test cases.

• Requirements traceability: Trace a requirement from its emergence to its 
fulfillment, e.g., acceptance test cases.

• Motivations:  

• Understand rationale 

• Certification, auditing, compliance with standards 

• Assess impact of change
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Traceability between 
Requirements

• Natural language 

• Sometimes structured (template) 

• Hundreds of traces 

• Domain terminology, concepts, and their relationships are key to discovering traces 
among requirements 

• Rely on syntactic and semantic similarity measures 

34
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Requirements-Requirements
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Requirements

Cas
e-A

• 160 Requirements
• 9 change scenarios

Cas
e-B

• 72 Requirements
• 5 change scenarios

[RE 2015, TSE 2015, ESEM 2014, ESEM 2013]



Example

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk. 
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Change Example

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk document repository. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk.
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Challenge#1 -  

Capture Changes Precisely

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk document repository. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk.
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Challenge#2 - 
Capture Change Rationale

• R1: The mission operation controller shall transmit satellite 
status reports to the user help desk document repository. 

• R2: The satellite management system shall provide users with 
the ability to transfer maintenance and service plans to the 
user help desk. 

• R3: The mission operation controller shall transmit any 
detected anomalies with the user help desk.

39



• R1: The mission operation controller shall transmit satellite status reports to the user help desk 
document repository. 

• R2: The satellite management system shall provide users with the ability to transfer maintenance 
and service plans to the user help desk. 

• R3: The mission operation controller shall transmit any detected anomalies with the user help desk.

40

Challenge#2 - 
Change Rationale

Rationales: 

1: We want to globally rename “user help desk” 
2: Avoid communication between “mission 
operation controller” and “user help desk” 
3: We no longer want to “transmit satellite status 
reports” to “user help desk” but instead to “user 
document repository” 



Solution Characteristics

• Accounts for the phrasal structure of requirements
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The mission operation controller shall transmit satellite 
status reports to the user help desk document repository.

user help desk, Deleted 
user document repository, Added 

• Account for semantically-related phrases that are not exact 
matches and close syntactic variations 



Approach
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Arora et al., “Change Impact Analysis for 
Natural Language Requirements: An NLP 
Approach”,      IEEE RE, 2015
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Arora et al., “Change Impact Analysis for 
Natural Language Requirements: An NLP 
Approach”,      IEEE RE, 2015



Approach
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Rationale: 
Avoid communication between mission operation 

controller and user help desk.  

Propagation condition:  
mission operation controller AND user help desk 

AND transmit  

Arora et al., “Change Impact Analysis for 
Natural Language Requirements: An NLP 
Approach”,      IEEE RE, 2015



How effective is our approach?

• Extra requirements traversed 

• Case-A between 1%-7% 

• Case-B between 6%-8% 
except one case 

• Number of impacted 
requirements missed:  
1 out of 106
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Requirements Change 
Impact Analysis on Design
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Requirements-Design  
Traceability

• Capture the rationale of design decisions 

• Support evolution, avoid violating essential design decisions 

• Useful for impact analysis based on traces 

• What is a rationale? Level of granularity? 

• Design representation? 

46

Archi. & DesignRequirements



System Design Modeling

• Systems Modeling Language (SysML) 

• A subset of UML extended with systems engineering diagrams 

• A standard for systems engineering 

• Preliminary support for requirement analysis and built-in traceability 
mechanism  
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CIA Automation Goal

• Given a change in a requirement, our goal is to compute a set 
of (potentially) impacted design elements that includes 

• all the actually impacted elements (high recall) 

• very few non-impacted elements (high precision) 
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Requirements Diagram
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:Over-Temperature 
Monitor

:Diagnostics 
Manager

:Diagnostics and 
Status Signal 
Generation

:Digital to Analog 
Converter

:DC Motor 
Controller:Temperature 

Processor

<<requirement>> 
Over-Temperature 

Detection 
(R11)

<<requirement>> 
Operational 

Temperature Range 
(R12)

B1

B2

B3

B4

B5

B6

<<satisfy>>

<<satisfy>>

Internal Block Diagrams (IBD)

• IBDs contain SW and HW blocks, ports, 
connector relations between ports, plus 
Satisfy traceability links between 
requirements and blocks.  

• A satisfy link between a block and a 
requirement indicates that the function 
implemented by the block contributes to 
the satisfaction of the requirement. 



Diagnostics Manager

<<Decision>> 
Is position valid?

<<Decision>> 
Over-Temperature 

detected?

<<Assignment>> 
Error = 1

B3

<<Assignment>> 
MotorDriveMode = OFF

<<Assignment>> 
MotorDriveMode = RUN

[yes] [no]

[yes]

[no]

Activity Diagrams (AD)



Traceability Information Model 
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Traceability Information Model 
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Explicit 
traceability links



Traceability Information Model 
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Explicit 
traceability links



Our CIA Approach
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Structural  
Analysis 

Behavioral 
Analysis 

Natural 
Language 
Processing 

Analysis  



Approach
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Build SysML 
Models

System  
Requirements

Traceability  
Information Model

Requirements and  
Design Models

Estimated  
Impact Set

Compute 
Impacted 
Elements

Change  
Statements

Phrases
Similarity 

Matrix

Process 
Change 

Statements 

Sort 
Elements

Sorted 
Elements 

Nejati et al., “Automated Change Impact Analysis 
between SysML Models of Requirements and Design”,  
ACM FSE 2016



Case Study
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Electronic Variable Cam Phaser (CP)

• Includes mechanical, 
electronic and software 
components 

• Adjusts the timing of cam 
lobes with respect to that 
of the crank shaft in an 
engine, while the engine is 
running.  

• CP is safety-critical and 
subject to the ISO 26262 
standard.
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Summary
• We provided an approach to automatically identify the impact of requirements changes on 

system design

• Our approach includes:  

• A SysML modeling methodology with acceptable traceability cost 

• An algorithm for impact computation that combines models’ structure, behavior and 
textual information

• Industrial case study: Our hybrid approach reduces the number of elements inspected from 
370 to 18

• Scalable approach: A few seconds to compute and rank estimated impacted elements
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Conclusions
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motivation to document requirements in a precise and 
complete form. 
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Main Takeaway Message

• In most cases, for many reasons, providing guidance to 
architects and developers does not seem to be a sufficient 
motivation to document requirements in a precise and 
complete form. 

• We somehow need to increase the RoI of writing such 
requirements if we want practice to change. 

• We need to develop practical technologies that increase RoI
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A Way Forward

• Many opportunities: (1) Acceptance test automation, (2) 
Change impact analysis (e.g., for safety certification or 
regulatory compliance), (3) Automated QA, and more. 

• With a focus on natural language requirements.

• With a high degree of robustness to unrestricted, flawed NL 
requirements

• Keeping in mind scalability
60
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Requirements for AI Systems
• No source code from which to derive intent

• Components for which precise functional requirements are difficult to 
express, e.g., pedestrian detection

• Safety, robustness, and security requirements are critical though --- 
their specification will increasingly be required by regulations

• Operational Design domain must be specified (a form of requirement)

• There is an opportunity for impact here for the RE community!
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Operational Design Domain
• An operational Design Domain (ODD) refers to the specific conditions under 

which a system or technology, like an Autonomous Vehicle (AV), is designed  to 
function safely and efficiently.  

An ODD includes characteristics such as:  

• Geographic location: roads, highways, or regions where the system is intended 
to operate.  

• Environmental conditions: weather and light conditions such as daytime, 
nighttime, fog, rain, or snow.  

• Traffic conditions: types of other road users (vehicles, pedestrians, cyclists), 
traffic density, and road infrastructure.  

• Operational constraints: legal restrictions, speed limits, or other rules that the 
system must adhere to 
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LLMs in Requirements 
Engineering

• Requirements generation

• Requirements completion

• Requirements to test cases

• Requirements classification

• …

• May render automation more 
affordable and practical
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Vogelsang and Fishbach, “Using Large 
Language Models for Natural Language 
Processing Tasks in  Requirements Engineering: 
A Systematic Guideline”,  ArXiv, 2024
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