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Abstract—Behavior-driven development (BDD) enables collab-
oration among different stakeholders by employing a natural-
language representation of system requirements and of test
scenarios. These scenarios often involve constraints over string
values, e.g. for the validity of email addresses, which are challeng-
ing to test comprehensively. Traditional methods like SMT solvers
(e.g. Z3, Ostrich) handle constraints efficiently but produce
unrealistic strings and require formal specifications that are
often unavailable and expensive to compute. This paper explores
the potential of large language models (LLMs) in generating
realistic, constraint-satisfying strings for BDD. We propose an
evaluation framework to assess LLMs’ ability to (1) generate
consistent string values and (2) detect constraint inconsistencies.
In our experiments, three LLMs are compared to state-of-the-
art solvers using constraints from a software engineering course
project. Results show that while solvers dominate in precision
and recall, LLMs derive realistic strings more suitable for
a requirements engineering context. With these trade-offs, we
believe that, when formal constraints are available, a combined
LLM-solver approach could offer a more effective solution.

Index Terms—large language model, specification-based test-
ing, constraint solving

I. INTRODUCTION

Motivation. With the rise of agile methodologies, effective
software development relies on the adequate interaction be-
tween domain experts, technical team members and end-users.
This interaction becomes particularly challenging when con-
sidering the varying levels of domain expertise and technical
knowledge of involved parties. To facilitate this interaction,
agile methodologies often integrate behavior driven develop-
ment (BDD) approaches, where requirements of the system
behavior are represented at a high level of abstraction (often
in natural language) understandable by all parties [1].

As part of the BDD workflow, system requirements yield
natural-language test scenarios which express the expected
behavior of the system-under-test in a semi-structured format.
The Gherkin language [2] is often used to represent such test
scenarios using a Given-When-Then structure: Given some
initial context; When some event occurs; Then this should
result in some expected outcome.

As an example, let us consider a software system
where users may create an email address. To test such

*Both authors contributed equally to the research.

a system, a tester may create the following test scenario:
Given a user is on the registration page And the user
has entered ”dummy@email.com” in the email field And
”dummy@email.com” is not registered in the system; When
the user clicks on the ”create an email address” button;
Then the system should successfully create the email address
”dummy@email.com”.

Problem statement. While representing tests in natural
language does simplify the creation of individual test cases,
creating test suites to adequately evaluate a software system
remains a daunting and error-prone task. Internal logic of
software systems is often complex, thus adequately testing
the system requires a set of specific inputs (e.g. with respect
to some requirements). For instance, the system should not
allow users to create email addresses from entries such as
”dummyemail.com” or ”dummy@emailcom”: email addresses
are required to contain exactly one ”@” character and at least
one ”.” character following it.

To adequately handle natural-language test cases, BDD
relies on a string representation. As a result, adequate testing
within BDD requires input string data (in our case, the email
entry) that satisfies some constraints (e.g. derived from system
requirements). While generated strings must satisfy all input
constraints, this may not be possible in cases where require-
ments are inconsistent. Such inconsistencies must be identified
early, as addressing them in later stage can be expensive.

To generate constraint-satisfying strings, existing ap-
proaches are often formal: they rely on general-purpose SMT
solvers such as Z3 [3] or string-specific constraint solvers, such
as Ostrich [4]. Such approaches can handle complex string
constraints efficiently, but their derived strings lack realism,
which is particularly problematic for natural language test case
creation. Moreover, such approaches rely on a formal defini-
tion of requirements (e.g. using the SMT-LIB2 syntax), which
is often unavailable (and hard to create) for many software
projects. Language models (LMs) are primarily designed to
generate natural, contextually relevant text. However, adapt-
ing them for string constraint satisfaction typically requires
extensive training or fine-tuning; a process that demands large
datasets, which are often unavailable. Recently, large language
models (LLMs) have emerged as a promising alternative for
logic reasoning tasks [5], particularly due to their strong
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few-shot generalization capabilities in data-scarce settings.
However, their effectiveness in satisfying strict specification
constraints remains less studied.

Contributions. This paper explores the ability of LLMs
(vis-à-vis formal approaches) to generate string values that
satisfy a set of input constraints and to detect inconsistencies
in string constraint sets. The specific contributions of this paper
are the following.

• We propose a novel approach to evaluate whether LLMs
are capable of (1) generating consistent string values and
(2) detecting inconsistencies for natural-language string
constraint satisfaction problems given as input.

• Our approach integrates a constraint solver (1) for validat-
ing the LLM output, and (2) for string constraint solving
independently when formal specifications exists.

• We conduct experiments with three popular LLMs, (i.e.
GPT-4o, GPT-4o-mini, Llama3.1-8b [6]) and compare
their performance to that of three state-of-the-art formal
approaches (i.e. Z3 [3], Z3str [7], cvc5 [8]). We assess
a case study consisting of constraints over six types of
string variables drawn from an undergraduate software
engineering course project.

Added value. To our best knowledge, our paper is the first
to evaluate the capacity of LLMs for solving formal constraint
satisfaction problems over strings. Through our comparative
evaluation, we provide insights on the strengths and weak-
nesses of both LLMs and formal approaches in generating
consistent strings in the context of BDD. Additionally, we
provide insights on the usability of generated strings for
requirements specification, e.g., by assessing their realism.

II. BACKGROUND

A. Behavior-driven development (BDD)

To illustrate the workflow employed by the BDD method-
ology, we expand on the example depicted in Section I. First,
let us consider that the email address creation system has the
folowing three requirments:

R1 The system shall require an email address to contain
exactly one ”@” character.

R2 The system shall require an email address to not end
with a ”.” character.

R3 The system shall require an email to contain at least one
“.” character after the “@“ character.

Given these requirements, a developer must first select a set
of test scenarios and associate an expected system behavior.
An example containing four such scenarios, represented as
conditions over the requirements, is shown in Table I. Once
a scenario is selected, the developer must define an input
string that would trigger the adequate portion of the underlying
system. With an increased number of requirements, not only
does the number of relevant scenarios increase but so does the
complexity of the string constraint satisfaction problem.

The problem becomes particularly challenging when con-
sidering the existence of string-specific corner cases as part
of the test suite. For instance, it is difficult to manually

understand that a R1 ∧ ¬R2 ∧ ¬R3 scenario is unsatisfiable,
since a string cannot end with a ”.” (¬R2) if it does not
contain any ”.” characters after ”@” (¬R3). To address this
challenge, we leverage automated approaches (LLMs, SMT
solvers) for generation of consistent strings as well as for
automated detection of (unsatisfiable) corner cases.

TABLE I
TEST SCENARIOS AND CORRESPONDING STRING INPUTS DERIVED FOR

Scenarios System Behavior Input
R1 ∧R2 ∧R3 Store email in database ”dummy@email.com”
¬R1 ∧R2 ∧R3 Show error message ”dummy@@email.com”
R1 ∧ ¬R2 ∧R3 Show error message ”dummy@email.”
R1 ∧R2 ∧ ¬R3 Show error message ”dummy@emailcom”

B. Constraint satisfaction problems over strings

String-based constraints are common not only in commer-
cial software applications, e.g., through password and email
restrictions, but are also addressed significantly in scientific
research. Automated string constraint solvers [4], [9]–[12]
often rely on formal reasoning techniques and are designed
to solve collections of complex constraints. These approaches
are evaluated over large benchmarks1 and in the context of
solver competitions2, where string constraints are represented
using a formal language (e.g. SMT-LIB2 [13]).

In the context of these complex benchmarks, solvers are
assessed in accordance to their achieved runtime and success
rate. Non-functional parameters, such as qualitative analysis
(e.g. realism, relevance) of the generated string, are not
considered, which limits the extensibility of formal solvers
to domains such as requirement engineering. Additionally,
solvers require a formal problem definition as input, which is
rarely available for systems employing the BDD framework.

C. Large language models (LLMs)

LLMs are advanced neural networks based on the trans-
former architecture [14], initially designed for language mod-
eling tasks. Through instruction fine-tuning, LLMs can be
trained to follow input instructions, enabling them to adapt
to diverse tasks via in-context learning using a few examples
or even zero-shot predictions with only task descriptions.

Recent research highlights LLM’s emerging reasoning ca-
pabilities, achieving notable performance on many logic rea-
soning benchmarks [5]. This positions them as promising
alternatives to traditional constraint solvers for addressing
constraint-solving problems involving string values.

Since LLMs accept natural language as input, a significant
amount of research has been conducted to optimize prompts
for improving performance, an active area know as prompt
engineering. Techniques such as zero-shot chain-of-thought
reasoning [15] and leveraging emotional stimuli [16] have
proven effective across various LLMs.

Although LLMs typically produce natural language output,
recent advancements have enabled them to produce structured

1https://smt-lib.org/benchmarks.shtml
2https://smt-comp.github.io/2024/
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Fig. 1. Overview of the approaches

output, such as the structured outputs of OpenAI API3 and out-
put parsers from LangChain4. In this paper, we use LangChain
to instruct the LLM to present final answers in JSON format.

III. PROPOSED ARCHITECTURE

Figure 1 illustrates the process of test data generation using
both LLMs and constraint solvers. The purple arrows indicate
the flow for constraint solvers while the blue arrows represent
the flow for LLMs. The process begins with scenario gener-
ation based on the requirements. These generated scenarios
are then provided to both the constraint solver and to the
LLM for test data generation. The test data produced by the
LLM is validated using the constraint solver. If necessary, the
LLM is prompted to retry. If the LLM is unable to produce a
valid value, this may suggest potential inconsistencies in the
requirements (as indicated by the red dashed arrow).

A. Scenario generation

We focus on natural language requirements for strings.
Given a requirement, the scenario generator formulates it as a
list of conditions in a behavior-testing scenario that the string
variable must satisfy. The goal of the generator is to either
produce test data that meets all constraints and can be used in
the scenario or flag the scenario as unsolvable (UNSAT).

B. Data generation with constraint solvers

To generate string data using a constraint solver, the con-
ditions are first translated into a formal specification through
a constraint formalizer. Since mapping natural language to
constraint languages is not the focus of this paper, we manually
translate the conditions into SMT-LIB2 constraints.

For each set of constraints associated with a scenario, a
constraint solver produces one of three possible outputs: (1)
SAT, indicating that the constraints are satisfiable with a valid
string value; (2) UNSAT, indicating that the constraints are
inconsistent and unsatisfiable; or (3) UNK, indicating that the
solver fails to make a decision within a pre-defined time limit.

3https://openai.com/index/introducing-structured-outputs-in-the-api/
4https://python.langchain.com/

You are a test engineer working on creating test data for 
a new feature. You are given a variable "{name}" with some 
associated constraints.

First, explain the meaning of each constraint. Then think 
step by step to find a string value for "{name}" that 
satisfy ALL following constraints:
{constraints}
If the word "{name}" is meaningful, the value should be as 
realistic for "{name}" as possible.

The output should follow the following format. If no value 
can satisfy all constraints, assign the value "UNSAT":
{output_format}

Keep the results concise. If the answer is not correct, 
then you will be fired from your job.

Fig. 2. Prompt template used for LLMs

C. Data generation with LLMs

LLMs can directly generate string values based on text
conditions in scenarios. The prompt formatter constructs a
prompt for LLMs by using the input scenario and the string
variable’s name to guide the generation of realistic values.
Figure 2 illustrates the prompt template used for generation.

We adopt zero-shot prompting, focusing on identifying a
single valid string value for each scenario. To enhance the
LLM’s performance, we incorporate several best practices into
the prompt design. The prompt begins with a role description,
establishing the task context. To improve reasoning, we enable
the zero-shot chain-of-thought [15] by instructing the LLM
to think step by step. Additionally, emotional stimuli, shown
to improve LLM performance across various tasks [16], are
appended at the prompt’s end. The scenario generator provides
the string variable’s name and constraints.

Since LLMs generate text-based responses, a result parser is
used to extract the values produced by the model. To facilitate
straightforward extraction, the LLM is instructed to output
responses in a JSON format specified by the output format.
If the LLM fails to generate a valid JSON, it is prompted to
retry until a valid response is produced.

The LLM’s output can fall into two types: (1) a string value
that may satisfy the input constraints or (2) UNSAT indicating
that the scenario may be unsolvable. The correctness of LLM
outputs cannot be guaranteed, hence we use a constraint solver
to validate them. When the LLM generates a value for the
string variable, a new constraint is introduced in the constraint
solver input requiring the string variable to equal the LLM-
generated value. The value is considered valid if the constraint
solver returns a SAT result, otherwise it is invalidated. This
mechanism can also act as a filtering step, prompting the LLM
to retry if the generated value is invalid.

D. Consistency feedback

When the constraint solver returns an UNSAT result for a
scenario, it indicates the presence of inconsistent constraints
within the scenario. Similarly, as the LLM operates based on
the natural language specifications, if the LLM generates an
UNSAT value, this may reflect inconsistencies in the original
requirements. This capability is particularly valuable in cases
where natural language requirements are challenging to for-
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malize as constraints. In this paper, we target to investigate
LLMs’ ability to perform such consistency checks.

IV. DATASET

A. Data collection

To evaluate the performance of string value generation
approaches, we collect six different types of string vari-
ables. Requirements for these variables are extracted from
past projects from an undergraduate software engineering
course. Table II shows these types of string variables and
the number of requirements associated with each type. From
these requirements, we derive a total of 192 test scenarios
(string constraint satisfaction problems) by considering all
possible combinations of the requirements and their negations
using equivalence partitioning [17]. To ensure conditions are
precise, we manually formulate these requirements. While
some problems may be unsatisfiable, we integrate them as
a manner of examining the capacity of LLMs to detect such
inconsistencies in requirements.

B. Ground truth labeling

Before using LLMs, we examine the performance of con-
straint solvers in producing the ground truth labels.

Constraint solvers: We manually translate the requirements
to formal logical constraints and use Z3 [3] to derive consistent
string values from them. However, Z3 is a general-purpose
SMT-solver and not specialized to handle constraints related
to string variables. Thus, in addition, we also evaluate two
solvers specialized for strings: Z3str [7] and cvc5 [8]. We set
a timeout of 30 seconds for each run of the constraint solvers.

Results: Table III shows the labeling results of each solver.
In general, the cvc5 solver significantly outperforms the other
two solvers with only 3 timeout cases: it is particularly better
at identifying unsolvable cases. Interestingly, all 3 unknown
cases are associated with constraints on date strings, highlight-
ing handling dates with the constraint solver can be non-trivial.

Analysis of our results shows that one UNK case from
cvc5 is solved by Z3. Furthermore, upon manual inspection,
we determine that the remaining two UNK cases are in fact
UNSAT (and we label them accordingly). As such, the dataset
contains in total 140 SAT problems and 52 UNSAT problems.
This shows that UNSAT problems are common for string-
based constraints in the context of BDD, thus making their
early detection a relevant challenge.

V. EVALUATION

In this section, we present our evaluation results pertaining
to the use of LLMs for solving string constraint satisfaction
problems derived from requirements. We introduce our evalu-
ation setup, built upon the dataset described in Section IV, we
present our measurement data and we discuss the implications
of our findings in the context of requirements engineering.
Specifically, we address the following research questions:
RQ1 How do LLMs compare with constraint solvers in

(RQ1.1) generating consistent strings and (RQ1.2) de-
tecting inconsistent specifications?

RQ2 How does the success rate of LLMs improve with
increased attempts?

A. Evaluation setup

a) Compared methods: As part of our evaluation, we
evaluate three popular LLMs and compare their performance
to those of the three constraint solvers mentioned in Sec-
tion IV. Among the evaluated LLMs, GPT4o and GPT4o-
mini 5 are the latest powerful large language models developed
by OpenAI. They regularly achieve improved performance
in multiple tasks compared with other LLMs, especially in
logical reasoning-related tasks, making them most suitable
for this study. However, powerful LLMs have some practical
limitations. They can be either (1) very expensive to run or (2)
operated behind an API with potential privacy concerns. With
these limitations in mind, we also consider a less-powerful,
yet low-cost, open-source LLM Llama3.1-8b [6] with 4-bit
quantization, runnable in most consumer-grade GPUs.

To validate the LLM-generated strings, we integrate the Z3
solver. Despite resulting in numerous UNK outcomes when
attempting to solve the constraint satisfaction problems, Z3
always terminates (with a SAT or UNSAT) outcome when
used for validation purposes.

b) Metrics: We use generation success rate (GSR) to
evaluate the performance of valid string generation. The suc-
cess rate evaluates the percentage of cases where the approach
generates a string satisfying all constraints. The fact that a
constraint-solving problem is UNSAT may indicate that there
are some inconsistencies in the requirements. We evaluate the
performance of LLMs in identifying the UNSAT cases with
recall (UNSAT-R) and precision (UNSAT-P).

c) Implementation details: For LLMs, we use a temper-
ature value of 0.7 for GPT models and 0.8 for Llama3.1-8b.
The detailed implementation and the experiment setup can be
found in our GitHub repository6.

B. RQ1: Comparative analysis

RQ1 aims to evaluate the ability of LLMs, when given
a set of string constraints as input, (RQ1.1) to generate a
consistent string when possible or (RQ1.2) to detect any
inconsistencies in the input constraints. The performance of
LLMs is compared to that of state-of-the-art SMT solvers.
Comparative results, alongside standard deviation values for
LLMs (over 10 runs) are presented in Table IV.

a) RQ1.1 results: When attempting to solve consistent
string constraint satisfaction problems, all three SMT solvers
provide high success rates (over 94%). cvc5 achieves the
highest success rate by solving all but one of the 140 consistent
cases. In contrast, LLMs provide varying performance level
when addressing consistent problems. As expected, larger
models provide better performance than smaller models, with
GSR ranging from 40.56% for Llama3.1-8b to 79.30% for
GPT4o. In all cases, SMT solvers dominate LLMs in gener-
ating consistent strings.

5https://openai.com/index/hello-gpt-4o/
6https://github.com/20001LastOrder/llm-string-constraints
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TABLE II
DATASET STATISTICS AND GENERATED EXAMPLES

String Type # of req.s Example requirement (i.e., constraint) LLM results (GPT-4o) Solver results (cvc5)

Email 6 The system shall require an email address
to contain exactly one ”@” character. john.doe@example.com B@.A

Name 6 ... a name to contain at least one space. John Doe Z Z

Password 5 ... a password to contain one of the
following characters: ”!”, ”#”, ”$”. Ab1$ Z9a!

Url 3 .. a url to start with ”http://” or ”https://”. https://example.com http://.
Date 4 ... a date to contain two hyphens (-). 2023-10-15 0-1-1

International Bank
Account Number 3 ... the length of a bank number to be 22. 1210000000000000000000 121000AAAAAAAAAAAAAAAA

TABLE III
GROUND TRUTH LABELING FOR EACH CASE IN THE DATASET

Solver SAT UNSAT UNK
Z3 134 28 30

Z3str 132 29 31
cvc5 139 50 3

Final labeling 140 52 –

TABLE IV
PERFORMANCE OF COMPARED APPROACHES (IN %)

Approach GSR UNSAT-R UNSAT-P
Z3 95.71 53.85 100

Z3str 94.29 55.77 100
cvc5 99.29 96.15 100

GPT4o 79.30 ± 1.31 65.80 ± 0.60 69.74 ± 1.61
GPT4o-mini 57.54 ± 3.36 82.60 ± 2.01 48.49 ± 2.55
Llama3.1-8b 40.56 ± 4.23 24.00 ± 4.47 63.14 ± 7.77

Answer to RQ1.1. When addressing string constraint
satisfaction problems, SMT solvers provide better perfor-
mance (over 94% GSR) than LLMs (between 40% and
80% GSR). Additionally, we notice that larger models
provide better GSR for consistent string generation.

b) RQ1.2 results - SMT: As opposed to results for RQ1.1,
inconsistency detection yields varying performance from SMT
solvers. Z3 and Z3str detect inconsistent specifications with
53.85%-55.77% success rate, while cvc5 detects 96.15% of
inconsistencies. In cases where SMT solvers are unable to
detect an inconsistency, they return a UNK outcome. Naturally,
SMT solvers never return UNSAT for satisfiable specifications
(UNSAT-P is 100% for all solvers).

Upon manual analysis, we determine that Z3-based solvers
fail to identify inconsistencies in 8-9 name specifications, 18-
20 email specification and 3 date specifications. As a key
distinction, these string types include relational constraints
over characters within the string. For instance, the email type
contains a requirement stating that The string must contain
at least one ”.” character after the ”@” character. This
requires the solver to (1) find the ”@” character, (2) find the
substring defining the part after ”@”, and (3) determining if
the substring contains a ”.”. As indicated by our result, Z3-
based solvers struggle with such complex requirements.

c) RQ1.2 results - LLM: LLMs provide varying perfor-
mance when dealing with inconsistencies. GPT-based LLMs
provide an improved recall value compared to Z3-based ap-
proaches, with an increase of 10.03% to 28.75%. GPT4o-mini
provides the highest recall among LLMs (82.60 %), while
Llama3.1-8b provides a recall of only 24.00%. In all cases,
recall for LLMs are dominated by that of cvc5.

When assessing precision of UNSAT outcomes, GPT4o
provides the best performance (69.74%), while the results
for Llama3.1-8b (63.14%) are lower but comparable. Despite
the high recall, GPT4o-mini achieves the worst precision
(48.49%). We also note that Llama3.1-8b results show a
larger standard deviation (7.77%) compared to all other mea-
surements. We attribute this to the small, quantized size of
Llama3.1-8b, which may tend to output ”UNSAT” mentioned
in the prompt rather than solving the problem. In all cases,
precision results are dominated by SMT solvers providing
formal soundness guarantees by construction.

Answer to RQ1.2. On one hand, while GPT4o and
GPT4o-mini perform 10.03% to 28.75% better than Z3-
based solvers in correctly detecting real UNSAT cases,
recall-based measurements are dominated by cvc5. On
the other hand, while LLMs provide precision between
48.49% and 69.74%, they are dominated by SMT solvers,
which provide formal soundness guarantees by construc-
tion. As a practical outcome, we determine that GPT4o-
based solvers are better suited among LLMs for incon-
sistency detection in constraint specifications.

C. RQ2: Impact of attempts

When formal constraints are derived from requirements,
constraint solvers can act as a filtering validator to reject
invalid values. In this case, one can continuously ask the LLM
to attempt to generate a value until it satisfies all constraints.
Thus, RQ2 aims to evaluate the impact of such continued LLM
attempts at generating string values with constraints as input.

To evaluate the effects of a sequence of generation attempts
on success rate, we measure the GSR@k metric (used in
similar settings [18].) which considers a case to be successful
if one of k attempts is successful.

a) Results: Figure 3 shows the trend of GSR@k up to 10
attempts. As expected, the success rate increases as the number
of attempts increases for all LLMs. In general, the successful
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Fig. 3. Generation success rate after number of attempts for different LLMs

rate is increased for GPT4o by 12.68%, for GPT-4o-mini by
30.28%, and Llama3.1-8b by 48.59%.

Surprisingly, the improvement for Llama3.1-8b is much
more significant compared with more powerful models. The
value of GSR@10 for Llama3.1-8b is much closer to the GPT
models and even beats GPT-4o-mini while only achieving
about half of the GPT-4o-mini performance with one attempt.
This observation suggests that Llama3.1-8b is in general
less certain about its generated solutions. We observe a great
variance in solution success rate over the sequence of attempts

Nevertheless, the improvement in performance for all LLMs
starts to plateau around 8 attempts. Specifically, there are 8
common cases that all LLMs still fail to generate after 10
attempts, suggesting other types of approaches are necessary
for further improvement. Compared to solver performance in
Table IV, the best success rate after 10 attempts (91.55%) is
still less than the worst constraint solver (with one attempt).

Answer to RQ2. The success rate for all LLMs increases
as the number of attempts increases. Notably, the per-
formance change in weaker LLMs (e.g., Llama3.1-8b
by 48.59%) is much larger compared to more powerful
LLMs (e.g. GPT-4o by 12.68%). These changes become
less significant and start to plateau after 8 generations.

D. Discussion

Assessing realism: While our reported results indicate that
SMT solvers are superior to LLMs in string consistency,
manual analysis shows that strings from LLMs are often more
realistic than those derived from SMT solvers. Some example
values generated by both approaches are shown in Table II. In-
cluding additional constraints may help SMT solvers generate
more realistic strings, but this would greatly complicate the
constraint satisfaction problem. Moreover, this would require
one to formalize the concept of realism, which is challenging
due to its qualitative and subjective nature, particularly when
attempting to minimize bias. As LLMs have been trained
on natural language data, they can generate realistic strings
when instructed. As such, when LLMs successfully generate
consistent strings, they are better suited for applications in
natural-language domains, such as requirements engineering.

During early stage of the research, we find that removing
string variable name from the requirement generally reduces

the realism of the generated values, suggesting requirement
quality may also influence the LLM’s performance.

Detecting inconsistencies: For inconsistent specifications,
both recall and precision are dominated by cvc5. since no
valid string may be generated for inconsistent specifications,
qualitative analysis does not apply. As such, in cases where
a formalization of the string constraint satisfaction problem
exists, it is preferable to use SMT solvers, namely cvc5, for
inconsistency detection, particularly due to their sound nature.

A hybrid approach: Considering these trade-offs, we de-
duce that, when string constraint formalizations exist, a hybrid
approach would be most beneficial to address the challenge of
string constraint solving in a requirements engineering context.
Some early benefit is demonstrated by RQ2 when applying the
solvers as a filtering validator for the LLM. Such an approach
would first leverage an SMT solver to (quickly and accurately)
determine whether a problem is satisfiable, and then employ
some iterated approach like our proposed LLM-and-validation
approach to derive realistic, consistent strings. Additionally,
considering the benefits of constraint formalization, we may
also investigate the capacity of LLMs to derive such formal
specifications independently.

E. Threats to validity

Internal validity: The authors manually transform natural-
language requirements into equivalent SMT-LIB2 constraints,
which may introduce bias. To mitigate this bias and ensure cor-
rect transformation, we manually analyze the SMT-generated
strings and UNSAT outcomes to ensure their correspondence
to the natural-language requirements. In the case of LLMs,
their output may slightly vary between each run. To address
this variation, we evaluate the performance of LLMs over mul-
tiple runs and report the mean value and standard deviation. In
some cases, such variation is even desirable (e.g. for GSR@k).

External validity: String values collected for experiments
are from a software engineering course, i.e., representative for
string requirements in education scenarios. The findings might
slightly differ for other types of string requirements but we do
not expect a significant difference.

Construct validity: We evaluate the performance of ap-
proaches on standard success rate for generation, and preci-
sion/recall for classification. When a validator exists, we use
GSR@k, a metric widely used in similar settings.

VI. RELATED WORK

LLM for requirements engineering. LLMs are becoming
increasingly popular in various stages of requirements engi-
neering, including elicitation, modeling and verification [19].

In requirement elicitation, LLMs assist in proposing inter-
view questions [20] for identifying new requirements. Ronanki
et. al. [21] explore the strengths and limitations of LLMs in
the elicitation process. In requirement modeling, studies have
shown LLM’s ability in generating goal models [22], [23].
Since requirements often contain ambiguities or inconsisten-
cies that are difficult to detect manually, LLMs have been
effectively applied to help identify these issues [24], [25].



In this paper, we explore the capability of LLMs to generate
test data based on constraints derived from requirements. We
also analyze how LLMs can provide insights into potential
inconsistencies by marking certain cases as unsolvable.
LLM for test data generation. Due to their impressive nat-
ural language understanding and generation capability, LLMs
have been used to generate test data from requirements for
various software testing tasks, such as testing graphic user
interfaces [26], fuzz testing [27] and even validating SMT
solvers [28]. However, less focus has been on generating test
cases for requirements on string variables.

Liu et. al. [29] propose a method to generate test cases for
string variables from user-written constraints. However, their
approach focuses on natural language requirements that are
less strict. In contrast, this paper also explores generating test
cases with formal specifications, such that constraint solvers
can be used to validate the results produced by LLMs.

VII. CONCLUSION

This paper investigate LLMs for supporting requirement
engineering in BDD testing scenarios. We evaluate LLMs’
ability to (1) generate string values that satisfy constraints
derived from requirements and to (2) identify inconsistencies
within those requirements. Compared to traditional solvers,
LLMs produce more realistic strings but struggle to fully
satisfy specified constraints and to identify inconsistencies. In
cases where formal constraints exists, integrating a solver as a
filtering validator notably improves the success rate of LLMs
after multiple attempts. These findings suggest that a hybrid
approach, combining LLMs and solvers, could offer a more
effective solution for consistent string generation in the context
of requirements engineering.

As part of our future work, we plan to extend the approaches
to handle more complex, interdependent constraints (e.g. if
user A is the parent of user B, then the birth date of user
A must be before that of user B). Furthermore, we plan to
leverage LLMs to derive SMT-solver-compliant formulae from
natural language requirements in order to automate the end-
to-end string data generation process.
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