
On the Automated Generation of UI for
Template-based Requirements Specification

Ikram Darif∗ , Ghizlane El Boussaidi† , and Sègla Kpodjedo
Department of Software and IT Engineering, École de technologie supérieure

Montreal, Canada
Email: ∗ikram.darif.1@ens.etsmtl.ca, †ghizlane.elboussaidi@etsmtl.ca

Abstract—Requirements specification is a critical phase of the
software development life cycle where requirements are identified
and documented. To mitigate the ambiguity of natural language,
templates can be adopted for the semi-formal specification of
requirements. Automated specification support is important as it
simplifies and expedites the specification process. However, de-
veloping the User Interface (UI) for template-based specification
is demanding in terms of time and resources. In this paper,
we propose a model-driven approach for generating UIs that
support template-based requirements specification. We support
the generation through mapping rules that link the template
metamodel to the UI metamodel. We provide a systematic four-
step process for the generation of UI from an input template,
which includes preparation, components identification, rendering,
and integration. We implemented our approach into our tool
MD-RSuT for the automated generation of UI. To evaluate
our approach, we compared it to manual UI development and
assessed the quality of generated UIs. Our evaluation indicated
that the approach provides multiple advantages over manual de-
velopment, and the generated UIs adhere to UI design principles
of structure, simplicity, visibility, feedback, tolerance, and reuse.

Index Terms—Requirements specification, Requirement tem-
plates, Automated UI Generation, Model-driven engineering.

I. INTRODUCTION

Requirements are crucial artifacts in software development.
They specify the capabilities that must be met by the system
to address the client’s needs [1]. Requirements are formally
documented within the Software Requirements Specification
(SRS), a document that gathers all requirements of a software
product [2]. Typically, requirements are specified in Natural
Language (NL). However, using NL introduces ambiguity and
errors within the specification. To mitigate these issues, the use
of templates has emerged for the semi-formal specification of
requirements. Templates include fixed parts and placeholders
that constrain the specification. They enhance the readability,
consistency, and clarity of the specified requirements.

Tool support for template-based requirements specification
facilitates the specification and reduces the possibility of
errors, particularly for systems with a large number of require-
ments. User Interfaces (UI) play a key role in such tools, as
they serve as the primary means of interaction for the user.
However, manually developing a UI for specific templates
requires time and continuous efforts to maintain the UI in
sync with the templates during their evolution. In this context,
automating UI generation is valuable as it significantly reduces
the time and efforts, while improving consistency across the

generated UIs. However, to the best of our knowledge, there
are no approaches that support the automated generation of UI
for template-based specification.

In this paper, we build on our previous work [3], [4] to
propose an approach for the automated generation of UI for
template-based requirements specification. In [3], we proposed
a model-driven engineering (MDE) approach for specifying
and evolving templates. The proposed approach relies on mod-
els that represent templates and a Domain Specific Modeling
Language (DSML), called UTL, to specify and constrain the
template models [4]. In this paper, we further leverage MDE
technologies to specify and generate the UI of the templates.
Thus our proposed approach relies on: (1) templates which
are represented by template models that are instances of a the
UTL metamodel, (2) UI which is represented by UI models
that are instances of an UI metamodel, and (3) mapping rules
that link the UTL metamodel to the UI metamodel enabling
the automatic generation of the UI. The process of generating
UIs from templates includes four steps: (1) Preparation, where
the input template is expressed using UTL, (2) Components
identification, where UI components are identified using prede-
fined mapping rules, (3) Rendering, where a UI is generated
using the identified components, and (4) Integration, where
the generated UI is linked to the backend code. This process
supports UI generation for requirements templates of all types,
beyond the seven templates proposed in our previous work [3].
We implemented our approach into our tool called MD-RSuT
[3]. It allows the automated generation of UI for templates
created through MD-RSuT.

To evaluate our approach, we assessed the quality of gen-
erated UIs against established UI design principles, and we
compared it to manual UI development. Our evaluation showed
that our approach provides multiple benefits over manual
development, and the UIs adhere to the UI design principles:
structure, simplicity, visibility, feedback, tolerance, and reuse.

The structure of the paper is organized as follows. In
Section II, we review the related work. Section III presents our
approach and tool support. Section IV presents the evaluation
and the threats to validity. Finally, Section V concludes our
paper and presents our future work.

II. RELATED WORK

Several approaches were proposed to support the automated
generation of UIs. For instance, Kolthoff et al. [5], [6] present

https://orcid.org/0009-0002-2646-4471
https://orcid.org/0000-0001-6145-774X
https://orcid.org/0000-0001-5224-9658

an approach called GUI2R, that semi-automates the generation
of graphical UI (GUI) prototypes for mobile applications from
unconstrained NL requirements. They use Natural Language
Processing (NLP) and Information Retrieval (IR) techniques to
process requirements that are mapped to mobile GUI reposito-
ries to identify relevant GUI components [5]. Juárez-Ramı́rez
et al. [7] present an approach for the automated generation of
UI prototypes from semi-formal Controlled Natural Language
(CNL) requirements. In this approach, the requirements an-
alyst specifies requirements, which are then analyzed by the
NLARE tool to identify key elements for building use cases
[7]. These elements are used to build use case descriptions,
from which the interactions necessary for use cases are iden-
tified. Finally, these interactions are translated into UI elements
and events [7]. In their study [8], Elkoutbi et al. propose an
approach for the automated generation of UI prototypes from
user scenarios using the Unified Modeling Language (UML).
The scenarios are presented in UML collaboration diagrams,
and then transformed into UML statechart specifications. The
corresponding UIs are then automatically generated from the
identified specifications. While these approaches [5]–[8] are
relevant for GUI prototyping from requirements, they do not
support the specification of requirements.

Other approaches use model-driven technologies for UI
generation. For instance, Rosado et al. [9] propose an approach
for the automated generation of UI models from use case and
domain models. This is supported by defining: (1) a UML-
aligned metamodel for domain and use cases, (2) a MOF-based
metamodel for UI models, and (3) a set of transformation rules
between the metamodels to support the generation [9]. Another
example is proposed by Puerta et al. [10], where an environ-
ment for model-based UI development from domain models
is proposed. The UI generation is supported by a knowledge-
based system that applies a set of dialog design and layout
rules. While these approaches use model-driven technologies
for UI generation, they are not applicable to support the
specification of requirements. To the best of our knowledge,
there are no approaches for model-based automated generation
of UI for template-based requirements specification.

III. A MODEL-DRIVEN APPROACH FOR AUTOMATED UI
GENERATION

To support the generation of UI for template-based spec-
ification of requirements, we propose the four-step approach
defined in Figure 1. Our approach is model-driven, as: (1) the
input templates are represented by template models, which
are instances of the UTL metamodel, and (2) the generated
UIs are represented by UI models, which are instances of a
UI metamodel. UTL is a domain specific modeling language
that we introduced in our previous work [4]. We support the
automated generation of UI by defining mappings between the
template metamodel (UTL) and the UI metamodel.

The UIs for using templates include two portions, one
that is common between templates, and another that varies
between templates. Our approach covers the generation of
the second portion of the UI, which differs across templates.

Figure 2 presents an example of a template’s UI. The common
portion (i.e., the top part in the figure) includes: (1) fields
for general information about the template (e.g., name and
source), (2) a drop-down list to select the template to be used
for the specification, (3) a dynamic text field displaying the
requirement’s text (i.e., the text is automatically built by the
tool using the input of the user through the part that varies:
the bottom part in Figure 2), and (4) a HELP button to access
information about the selected template. The remaining UI
components are specific to the selected template. Our approach
focuses on the generation of these components.

Our approach consists of four steps: (1) Preparation, where
the input template is expressed using the UTL’s syntax,
(2) Components identification, where the UI components are
identified by applying mapping rules between the template
metamodel and the UI metamodel, (3) Rendering, where the
identified UI components are used to build the UI, and (4)
Integration, where the generated UI is linked to the back-end
code. In the following, we explain each step of the approach.

A. Preparation

In this step, the template must be expressed using the
syntax of UTL. This ensures that the template conforms to
the template metamodel, thus enabling its automated analysis.
Figure 3 presents examples of two templates: (1) a simple
type definition template, which specifies primitive types (e.g.,
numeric, alphanumeric) and optionally their expected values,
and (2) a composite type definition template, which speci-
fies composite types through a list of parameters and their
variability (i.e., whether they are fixed or variable). These
templates are written according to UTL’s syntax [4]: (1) op-
tional elements are enclosed in brackets ”[]”, like the expected
values part in the simple type definition template; (2) elements
with one-to-many occurrences are enclosed in parentheses
”()+”, like the parameter definition part of the composite
type definition template; and (3) some placeholders can be
defined by enumerations, like the variability placeholder in
the composite type definition template. We will use these
templates to illustrate the UI generation process.

B. Components Identification

The second step of the approach is Components identi-
fication. During this step, the components of the UI are
identified based on the input template. This identification is
achieved by applying mapping rules that link elements of the
template metamodel to their corresponding elements (i.e, the
UI components that support their specification) within the UI
metamodel. Furthermore, this step establishes the relationships
(e.g., containment relationships) between the identified UI
components. In the following, we will present the template
metamodel, the UI metamodel, and the mapping rules.

1) Templates Metamodel: In our work [4], we introduced
UTL, a DSML for requirements templates. As part of UTL,
we developed a template metamodel that presents the high-
level structure of templates. The UTL metamodel is presented
in Figure 4. A requirement template includes one or multiple

Expressing the template using
our defined syntax

Identifying the components of
the UI using mapping rules

Building the UI from the
identified components

Integrating the UI with the
backend code

Performed manually using MD-RSuT Performed automatically by MD-RSuT

Preparation Components Identification Rendering Integration

Fig. 1. The UI generation approach

Fig. 2. Specification UI for the composite type definition template

Simple type definition template

The <type name> has the following specification:
Type: <type : Numeric / Alphanumeric / Alphabetic/ Enumeration>
[Expected values: <value enumeration>]

Composite type definition template

The <type name> has the following specification:
(<parameter name> <variability: FIXED / VARIABLE>)+… (one per line)

Fig. 3. Examples of templates

blocks. Each block can contain one to multiple statements,
i.e., lines of text. Blocks and statements are defined by their
name, their order within the template and block, respectively,
and their multiplicity, which indicates the number of instances
that can be specified within requirements. Also, a statement is
defined by ”isOnePerLine” attribute, which specifies whether
instances of a statement should be written each in a separate
line. For instance, the simple type definition template (Fig-
ure 3) includes two blocks: one with a 1-to-1 multiplicity that
includes two statements (the first two lines), and another with
a 0-to-1 multiplicity that includes one statement (the last line).

Each statement includes one or more elements. An element
can either be: (1) a fixed element, specifying the text that
does not change within requirements, or (2) a variable element,
serving as a placeholder that is filled to create requirements.
Elements are defined by their name, their order within a
statement, and whether they are optional. A fixed element is
defined by its text. A variable element can be of three types: (1)
String, i,e., a placeholder that can be filled with any value, (2)
Enumeration, i.e., a placeholder that can be filled with one of

the literals of an enumeration, or (3) Range, i.e., a placeholder
that can be filled with a value within a range. For instance, the
simple type definition template in Figure 3 includes one String
variable element, i.e., type name, and one Enumeration
variable element, i.e., type with four literals : Numeric,
alphanumeric, Alphabetic, and Enumeration.

To ease the definition of templates, we provide a set of
predefined templates that cover the specification of common
parts of requirements template, namely conditions, actions,
enumeration and ranges. A requirement template can include
zero or more predefined templates. The predefined templates
have the same structure as requirements templates. i.e., they
includes blocks, statement and elements. These templates are
defined in [4]. The simple type definition template in Figure 3
includes a predefined template for value enumeration,
which defines the representation of enumeration literals.

2) User Interface Metamodel: We developed the UI meta-
model presented in Figure 5 by analyzing the documentation
of some common UI libraries such as JavaFX1 and SWING2.
As the figure shows, a UI component can either be: (1) a basic
component, which represents elements such as buttons, labels
and text fields, or (2) a container, which holds and organizes
basic components. UI components are defined by their name,
their position within the UI (i.e., their coordinates x and y),
their size (i.e., their width and height), their visibility, and
their text. It is important to note that the UI metamodel covers
only a subset of existing UI components, as we are exclusively
focused on the components necessary for our specification UI.

In the UI metamodel, a container can either be a shell or a
group. The shell serves as the primary layer of the UI, holding
both groups and basic components. A group forms a section
within the shell, organizing one or more basic components.
There are two types of groups: (1) new groups, which are
created from scratch, and (2) predefined template groups,
which are fully built and tailored to support the predefined
templates described in Section III-B1. The latter are stored in
a library. They are defined to ease UI generation by providing
the structure for recurring predefined templates.

Each container includes one or more basic components. A
basic component can either be: (1) an abstract button, which
could be a check box button or a regular button; (2) an input
component that allows users to enter information, such as
a text field, a dropdown list, or a spinner; or (3) a label
that accompanies an input component to guide the user on
the information to be entered within the input component.

1https://openjfx.io/javadoc/23/
2https://docs.oracle.com/javase/8/docs/api/index.html?javax/swing/

https://openjfx.io/javadoc/23/
https://docs.oracle.com/javase/8/docs/api/index.html?javax/swing/

Fig. 4. The UTL metamodel [4]

Fig. 5. The UI metamodel

Each of these components is defined by specific attributes. For
instance, a button can trigger a function for adding or removing
certain groups from the UI. A dropdown list is defined by the
items it contains, and the spinner is defined by the minimum
and maximum values that constrain the input range.

3) Mapping Rules: We support the generation of UI from
input templates through mapping rules between the template
metamodel and the UI metamodel. Table I presents the map-
ping rules. UI components are identified differently depending
on the type of the template element in question (i.e., predefined
templates, blocks, statements, or variable elements). If the
input template includes predefined templates, each is mapped
to its corresponding UI group, which is predefined and stored
in a library (R1, R2, and R3 in Table I). For instance,
the value enumeration predefined template within the
simple type definition template (Figure 3) is mapped to the
VALUE_ENUMERATION UI group.

Each block is mapped to a group having the same name
of the block, which is linked to a label that displays the
block’s name (R4, R5, and R6 in Table I). Depending on
the multiplicity of the block, some UI components can be
added to the group. If a block has a 1-to-1 multiplicity, no
additional UI components are added to the group (R5 in

Table I)). If a block has a multiplicity of 0-to-1, the group
is linked to a checkbox that controls whether the block is
visible in the UI (R4 in Table I)). Finally, if a block has
an upper multiplicity of ”many” (e.g., zero-to-many or one-
to-many), the group will include two buttons: one that adds
the entries of the group to the requirement’s text, allowing
multiple entries, and another that clears the block’s text from
the requirement’s text (R6 in Table I). Consider the example
of the simple type definition template in Figure 3. The first
block (i.e., the first two statements) has a multiplicity of 1-to-1.
Thus, the corresponding UI group will not include additional
components. The second block has a zero-to-one multiplicity,
and thus the group will be linked to a checkbox.

Once groups are defined for blocks, the next step is to
identify the UI components for the contained statements. If
a statement has an upper multiplicity of ”many”, a group will
be created for it within the group defined for the block (R7
in Table I). Similar to blocks, the group will be linked to two
buttons for adding and removing the group’s entries to/from
the requirement’s text. Otherwise, no group is created, and
the UI components are identified directly from the variable
elements of the statement. For instance, the last statement of
the composite type definition template (Figure 3) has a one-

TABLE I
MAPPING RULES

to-many multiplicity. Thus, it is mapped to a UI group.

Finally, the last step is to identify the UI components for the
variable elements included in the statements. It should be noted
that the components are only identified for variable elements,
as fixed elements remain the same for all requirements, not
necessitating entries from users. Each variable element is
mapped to a different input component depending on its type,
but all input components are linked to a label displaying their
name. For instance, if the variable element is a STRING, it
is mapped to a text field, allowing the user to enter any value
(R8 in Table I). If the variable element is an enumeration, it
is mapped to a dropdown list that includes the literals of the
enumeration (R9 in Table I). Finally, if the variable element
is a range, it is mapped to a spinner that is constrained by the
range’s upper and lower bounds (R10 in Table I). For example,
in the composite type definition template (Figure 3), the text
name and parameter name elements are mapped to text
fields, while the variability element is mapped to a
dropdown list with two items: FIXED and VARIABLE.

C. Rendering and integration

The third step of our approach is Rendering, where the
identified UI components are integrated into the existing
specification window. Figure 2 presents the rendered speci-
fication window for the composite type definition template. It
shows the common portion and the generated UI components
for the template, i.e., the input components for type name,
parameter name, and variability, along with the add and clear
buttons. Finally, the fourth step is Integration, where the UI is
connected to the backend code for the corresponding template.
In our previous work [3], [4], each template is represented by a
template model which is implemented by generating the code
that supports the creation of requirements. In this step, the
generated UI is linked to the generated template code. By the
end of this step, the output is a fully functional UI enabling
requirements specification using the input template.

D. Tool support

To support the automated generation of UI for template-
based requirements specification, we extended our tool MD-

RSuT (Model-Driven Requirements Specification using Tem-
plates) [3]. MD-RSuT is an editor that supports the specifica-
tion and management of requirements using templates. MD-
RSuT includes JFIO (Just Fill It Out), an editor for UTL. JFIO
supports the creation of templates using UTL [4]. Both MD-
RSuT and JFIO are developed using the Eclipse Modeling
Framework (EMF) as it supports the creation and evolution of
models [11]. In addition, JFIO is developed using: (1) Xtext,
a framework for the development of DSLs [12], to create the
grammar and editor for UTL, and (2) Xtend, a high-level
programming language for code generation [12], to automate
the generation of code for the created templates.

We implemented our approach using: (1) EMF to build the
UI metamodel, (2) Xtext to create the grammar and the editor
for UI models, and (3) Xtend to automate the generation of
the UI code. When a template is created using JFIO, both the
backend code (generated from the template model) and UI
code (generated from the UI model) are automatically gener-
ated for the saved template. The fully functional specification
UI is then integrated into MD-RSuT and it is provided as
an option for specifying requirements. Figure 2 presents an
example of a UI that was generated by our tool.

IV. EVALUATION

We evaluate our approach with regard to two questions:
• RQ.1. Do generated UIs adhere to UI design principles?
• RQ.2. How does our approach compare to the manual

development of UIs?
To answer these questions, one of the authors applied

our approach to generate UIs for two well-known templates,
namely EARS Templates [13], and Rupp’s template [14]. The
generated UIs were then analyzed by the same author, and the
analysis was validated by the other two authors.

A. RQ.1: Do generated UIs adhere to UI design principles?

Designing effective user interfaces is a challenging and
complex task that requires careful consideration. In [15],
Constantine and Lockwood provide a set of six principles
for designing effective user interfaces. These principles aim
to enhance the usability and user experience. The proposed
principles are as follows [15]:

• Structure: UI components should be organized efficiently
to facilitate user navigation through the UI.

• Simplicity: the tasks commonly performed by users in the
UI should be simplified as much as possible.

• Visibility: only the elements that are needed by the user
should be visible.

• Feedback: users should be informed about the system’s
state and the outcomes of their actions (e.g., errors).

• Tolerance: UIs should be designed to be tolerant and
flexible by accommodating various user interactions and
handling unexpected behaviors.

• Reuse: reusable components should be used to maintain
consistency in the appearance and behavior of UIs.

We analyzed the UIs generated by our tool against these
principles. Regarding the Structure principle, our approach

supports: (1) the organization of UI components in a manner
that reflects the structure of the input template (e.g., by
maintaining the same order of elements as in the template),
(2) the arrangement of UI components within the specification
form, ranging from generic elements to specific ones, and (3)
the grouping of closely related components (e.g., elements
of the same statement). Regarding the Simplicity principle,
our approach promotes a minimalist design including only
necessary UI components for specifying the variable elements
of the template. Additionally, it enables the specification of
requirements in a single step within one window to reduce
the cognitive load on the user. Regarding the Visibility prin-
ciple, our approach ensures visibility of all the options, i.e.,
templates, that can be used for the specification (the ”Template
type” dropdown list). Furthermore, it provides access to a view
displaying information about the template via the "?" button.

Regarding the Feedback principle, our approach displays the
requirement’s text reflecting the information filled in by the
user in real time, allowing them to validate their entries. Also,
once the specification is complete, a message is displayed
to indicate if the requirement has been saved, or an error is
detected. For the Tolerance principle, our approach minimizes
errors by using spinners and dropdown lists that restricts
entries to valid values. It also allows the user to clear parts of
the requirement’s text if they enter an incorrect value. Finally,
for the Reuse principle, our approach maintains consistency
among the generated UIs by reusing the same base window
for the specification and adopting the same UI components for
the same type of entries. Finally, as our approach is model-
driven, it promotes reuse across developed UIs. Overall, UIs
generated through our approach adhere to UI design principles.

B. RQ.2: How does our approach compare to the manual
development of UIs?

The goal of this question is to investigate the advantages that
our approach provides compared to manual UI development.
In previous work [3], we manually built seven UIs for a set
of seven templates. An example of a manually developed UI
is provided in Figure 2. The UIs were implemented by two
developers. This manual development process will serve as
our manual reference for comparison.

In the manual process, we estimated a seven hour devel-
opment for each UI supporting a template. This is because
we were familiar with the libraries used to implement the UI.
We can anticipate that the time would be longer for novice
developers and developers unfamiliar with the programming
language and used UI libraries. While with our approach for
UI generation, the UI is generated and integrated with the rest
of the tool in few seconds. Additionally, we effectively defined
the UI and UTL metamodels, which can be directly reused to
specify a wide range of new templates. This is a tremendous
advantage of our approach as it reduces significantly the
development time and efforts.

Our approach also promotes maintainability. In our prior
manual process, the templates kept evolving. This required up-
dating the UI accordingly, thus adding more time and efforts to

the development task. Our approach reduces the maintenance
time and efforts considerably. It requires minimal efforts to
generate new UIs through the reuse of certain structures (e.g.,
predefined templates) and components. This eases the creation
of new templates and the evolution of existing ones.

C. Threats to validity

Some threats might impact the internal and external validity
of our evaluation. For internal validity, the evaluation of the
generated UI against UI design principles, and the comparison
to manual generation was performed by the authors. This
might introduce bias. To mitigate this, we adopted well-
established UI design principles for the evaluation. Also, we
plan to perform user studies with end-users to get more
insights on the quality of the generated UIs, and the usability
of the tool. With regards to external validity, the scope of
the evaluation is limited. We only compared the UIs that we
manually developed for our templates to those automatically
generated. To address this, we plan to compare the UI gener-
ated by our approach to other that were developed by other
practitioners/tools. Additionally, we only applied our approach
on templates that we created ourselves and two others. We plan
to evaluate our approach on broader range of templates.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a model-driven approach for
generating UIs to specify requirements based on templates.
The generation is supported through mapping rules that link
elements of the templates metamodel to elements of the UI
metamodel. Our approach is model-driven, which facilitates:
(1) the design of UI for all types of templates, (2) the reuse of
components across different UIs, (3) the management, evolu-
tion, and extension of the generated UIs, and (4) the generation
of UI for multiple platforms if needed. The generated UIs are
consistent, reusable, and scalable.

We provide a systematic process for the generation of UI
from input template, which includes: (1) Preparation where
the input template is expressed using UTL, (2) Components
identification where the UI components are identified through
the mapping rules, (3) Rendering where the UI is build
based on the identified components, and (4) Integration where
the developed UI is connected to the backend code. We
implemented our approach in our tool MD-RSuT, enabling the
automated generation of UI for new templates. This supports
the development of UIs with minimal time and efforts.

We evaluated our approach by comparing it to manual
development, and assessing the quality of the generated UIs.
The evaluation confirmed that the generated UIs adhere to UI
design principles, namely structure, simplicity, visibility, feed-
back, tolerance, and reuse. It also showed that our approach
provides multiple advantages over manual development. As
future work, we plan to perform user studies to further evaluate
the quality of the generated UIs. We also aim to improve the
generated UI’s customizability and styling to better align with
the user’s needs. Finally, to make the specification UIs more
dynamic and informative, we aim to support dependencies

between UI components, and to accommodate the verification
and auto-filling of requirements against domain knowledge.

REFERENCES

[1] “Ieee standard glossary of software engineering termi-
nology,” IEEE Std 610.12-1990, 1990.

[2] “Ieee recommended practice for software requirements
specifications,” IEEE Std 830-1998, 1998.

[3] I. Darif, C. Politowski, G. El Boussaidi, I. Benzarti,
and S. Kpodjedo, “A model-driven and template-based
approach for requirements specification,” in ACM/IEEE
26th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS), 2023.

[4] I. Darif, G. E. Boussaidi, and S. Kpodjedo, “UTL:
A Unified Language for Requirements Templates,” the
40th ACM/SIGAPP Symposium On Applied Computing,
the Requirements engineering track, 2025.

[5] K. Kolthoff, C. Bartelt, and S. P. Ponzetto, “Automated
retrieval of graphical user interface prototypes from
natural language requirements,” in Natural Language
Processing and Information Systems Proceedings, 2021.

[6] K. Kolthoff, “Automatic generation of graphical user
interface prototypes from unrestricted natural language
requirements,” in 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE), 2019.

[7] R. Juárez-Ramı́rez, C. Huertas, and S. Inzunza, “Au-
tomated generation of user-interface prototypes based
on controlled natural language description,” in IEEE
38th International Computer Software and Applications
Conference Workshops, 2014.

[8] M. Elkoutbi, I. Khriss, and R. Keller, “Generating user
interface prototypes from scenarios,” in IEEE Interna-
tional Symposium on Requirements Engineering, 1999.

[9] A. M. Rosado da Cruz and J. Faria, “A metamodel-
based approach for automatic user interface generation,”
in Model Driven Engineering Languages and Systems,
2010.

[10] A. R. Puerta, H. Eriksson, J. H. Gennari, and M. A.
Musen, “Model-based automated generation of user
interfaces,” in Proceedings of the Twelfth AAAI National
Conference on Artificial Intelligence, 1994.

[11] D. Steinberg, F. Budinsky, M. Paternostro, and E.
Merks, EMF: Eclipse Modeling Framework 2.0. 2009.

[12] L. Bettini, Implementing Domain Specific Languages
with Xtext and Xtend - Second Edition, 2nd. 2016.

[13] A. Mavin, P. Wilkinson, A. Harwood, and M. Novak,
“Easy Approach to Requirements Syntax (EARS),” in
2009 17th IEEE International Requirements Engineer-
ing Conference, 2009.

[14] K. Pohl and C. Rupp, Requirements Engineering Fun-
damentals: A Study Guide for the Certified Professional
for Requirements Engineering Exam : Foundation Level,
IREB Compliant. Rocky Nook, 2011.

[15] L. L. Constantine and L. A. D. Lockwood, Software
for use: a practical guide to the models and methods
of usage-centered design. 1999.

	Introduction
	Related work
	A Model-Driven approach for automated UI generation
	Preparation
	Components Identification
	Templates Metamodel
	User Interface Metamodel
	Mapping Rules

	Rendering and integration
	Tool support

	Evaluation
	RQ.1: Do generated UIs adhere to UI design principles?
	RQ.2: How does our approach compare to the manual development of UIs?
	Threats to validity

	Conclusion and Future work

