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ABSTRACT
The evolution of a socio-technical system is an iterative and collab-
orative process, in part driven by failures of the system. When a
system failure is sufficiently severe, an organizationmay conduct an
incident analysis to learn from the failure and choose post-incident
action items to co-evolve the technical and human aspects of the
system. Developing a better understanding of this failure-driven
software evolution processes is the goal of our ongoing research
project. As a first step, we have collected publicly published incident
reports, extracted and analyzed 104 post-incident action items in
those reports. The focus of our analysis has been on: (1) what moti-
vates those actions, (2) what changes are being made to systems, (3)
which parts of the systems are being changed, and (4) the goals of
the changes. In this paper we report on preliminary findings from
this analysis. Another aspect of this software evolution process that
has not yet been studied (as far as we have been able to determine),
is the relationship between incident analysis (along with the work
that follows the analysis) and requirements engineering. So in this
paper, we also discuss how aspects of requirements engineering
may be helpful in addressing challenges or open questions related
to incident analysis.
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1 INTRODUCTION
Requirements engineering (RE) covers a wide spectrum of activities
across the broader software engineering life-cycle. Taken together
they deal with “identifying, specifying, modeling, analyzing, and
validating the needs and constraints of a system”.1 The way these
activities happen varies significantly from organization to organiza-
tion; some activities are upfront while others are iterative, some are
abstract while others are concrete (perhaps bridging the what and

1https://mo2re.github.io/
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the how). But all of them feed into the design and implementation
and operation work of teams as they develop and evolve systems.

In our experience, one context in which some RE activities may
occur (perhaps informally) is after an incident, an event in which
the system experiences a failure such as an outage or degraded
functionality or performance. After an incident is mitigated, or-
ganizations may conduct an incident or postmortem analysis of
the incident and produce “a written record of [the] incident that
details its impact, the actions taken to mitigate or resolve it, the root
cause(s), and the follow-up actions taken to prevent the incident
from recurring.” [13] The written record which is produced from
the analysis is commonly referred to as a postmortem or incident
report (IR) [20] and the follow-up actions to be performed are com-
monly referred to as preventive actions, remedial actions, or just
action items.

The relationship between failure-driven software evolution pro-
cess and RE has not been studied from a research perspective. And
in practice, RE techniques are often not well (or explicitly) used
in the context of incident analysis, though we hypothesize that
incident analysis and the work that follows would benefit from
such techniques. To explore these ideas further, we have performed
an analysis of 104 action items, which are the output of the incident
analysis process. We identified these action items by reviewing 20
publicly available incident reports, and have performed an analysis
using a grounded theory-based analytic process with a focus on
characterizing the incident analysis process and understanding how
it drives the system’s evolution. For more details on our analysis,
see section 3.

In this paper, we report on our preliminary analytic results and
make the following contributions. We describe key findings relat-
ing to action items: action items are motivated by diverse triggers
throughout the lifecycle of incidents (Section 4.1), the actions being
taken both evolve the system immediately based on the analysis of
the behavior of the system during the incident and also have the
potential to lead to future evolution (Section 4.2), the actions evolve
multiple parts of the socio-technical system rather than just the soft-
ware (Section 4.3), and the goals of action items tend to be narrowly
focused on safety, visibility, and process maturation (Section 4.4).
We present three concepts which emerged from our analysis and
which highlight how incident analysis already borrows important
considerations found in RE activities (Section 4.5). We also include
a discussion on how the treatment of incident analysis as an RE
activity could address several challenges of incident analysis we
discovered and improve how we evolve systems in response to
failures (Section 5).
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2 BACKGROUND AND RELATEDWORK
What follows is a brief discussion of related work that we build
on in a number of overlapping areas, including software evolution,
requirements engineering, and learning from failure. While we do
not have space to say much about each, nor about all topics that
we do build on, this section should provide important background
on the lenses that have informed our work.

2.1 Learning From Failure
Incident response encompasses multiple engineering activities done
in response to (significant) system failures, including internal post-
mortem analyses. One product of these analyses is an incident
report which contains explanations of how and why the failure(s)
occurred, how they were mitigated, and most importantly for our
research, what changes are planned to prevent future failures. These
changes are often situated in lessons which are learned formally
and informally. The area of research and learning process is for-
mally known as learning from incidents (LFI) [14] and has recently
earned renewed attention in the area of software systems.2

Organizational learning includes aspects such as: observation,
lesson identified (an observation which has been analyzed and val-
idated), lesson learned (an identified lesson which was approved
by decision makers), lesson implemented (the lesson being imple-
mented and results of the implementation are verified), and best
practice (the preferred actions in a specific type of situation to
achieve an objective) [1]. Incident analysis is part of the (organiza-
tional) learning process [5, 6], producing new knowledge (lessons)
from incidents and helping build “an organizational memory of
what happened and why” [15].

2.2 Evolution in Socio-technical Systems
Some of the learning done during incident analysis is manifested in
action items [13]; that is, actions taken “to fix, remediate or ‘prevent’
the incident in the future” [17]. Engineers and key individuals in
the organization that owns the system are responsible for selecting
action items, or in other words, are responsible for driving the
system’s evolution. Unsurprisingly, incident-driven evolution is
often unplanned and unexpected. While some organizations have
created best practices for selecting action items [13] through their
own experience with incidents, we have yet to discover a standard,
cross organizational approach. Incident analysis itself is a complex
activity, and simple principles that ideally guide the selection of
action items (like “what-you-find-is-what-you-fix”) may not apply
universally [12, 16].

“Software evolution represents just one aspect of the evolution
of socio-technical systems” [8]. Socio-technical system theory con-
siders the interrelated nature of an organizational system of joint
human and software parts: through people, infrastructure, tech-
nology, process, goals, and culture [4]. Socio-technical systems
theory proposes that evolution of the socio- and technical parts
that does not consider the effect on the other will have limited
effectiveness [21].

2https://www.learningfromincidents.io/

2.3 Requirements Engineering
Software evolution can be examined from the perspective of re-
quirements engineering, founded upon the premise that evolution
is best managed with reference to the requirements of a system [7].
This perspective leads us to examine three elements involved in
the creation and maintenance of software: the domain assumptions
the software will operate in, the requirements the software must
meet, and the specification or detailed plan for implementing the
software.

Requirements engineering is an iterative process [19] of refine-
ment, involving interactions between these three elements. Post
incident analysis is one contributor to this iterative process, as they
present opportunities to reflect on and refine incorrect assumptions
(about the domain, behavior of the system, etc), identify incomplete
or missing requirements (whether functional or non-functional,
business, user, performance, etc), and explore problematic parts of
the specification or implementation of the system.

3 METHODOLOGY
Our analytic interest is in understanding how action items evolve
systems and the stakeholder concerns they represent to help us as
we characterize the post-incident requirements engineering work.
To this end, we have analyzed publicly available incident reports,
which document various failures and the action items taken in re-
sponse to the failures. In our experience, incident reports typically
represent careful analysis by engineers and managers, contain im-
portant contextual information relevant to our analytic interest,
making them suitable for a grounded theory-based analysis. The
unit of analysis for this research are the action items, and so far we
have extracted 104 of them from 20 incident reports.

3.1 Data Collection
The Verica Open Incident Database (VOID)3 is a “community con-
tributed collection of software-related incident reports”, housing
over 10,000 categorized artifacts like tweets, status page updates,
conference talks, media articles, and company postmortem IRs from
590 organizations. From VOID, we obtained a list of publicly avail-
able IRs which fit our criteria, which was that a candidate report
had to 1) be categorized by VOID as an IR (instead of a status up-
date, say), (2) be about a software failure, and (3) report on to an
incident no earlier than 2015. We randomly sorted the list and, as
an initial set, we have selected the first 25 from that randomized list
and sequentially assigned each an ID, from 1 to 25. After reading
each report, we discarded five for not being incident reports (IRs 1,
11, 16, 17, 23), since they did not meet the above selection criteria
despite having been categorized in VOID in that manner.

From the remaining 20 accepted IRs, we identified 104 action
items which were explicitly listed in each report. By explicit, we
mean that the action items were called out as actions they intend
to complete and not offhanded comments. We then reviewed the
reports to identify a rich set of information relevant to our analytic
interest about each action item. Specifically, for each action item
we have collected the event which is the primary motivation for
why the action item was added, the action which is the action that
will be performed on the socio-technical system, the target which is
3https://www.thevoid.community/
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Table 1: Example action items.

ID Event Action Target Goal

6-4 Incident responders restarted
database system without
verifying data integrity

Add a DBA (expert) to the
change committee to evaluate
failures before applications
are restarted

Emergency change
committee and procedures

Improve decision making
during incident response

9-18 Enabling feature caused
failure and was rolled back

Test and re-enable feature Streaming subsystem Carefully reintroduce
performance improvement

14-7 Cluster manager promotion
caused failures

Test more scenarios through
fault injection

Testing practices and tools Find failures in unanticipated
scenarios

25-11 Responders’ unfamiliarity
with tools delayed status
updates

Change engineering training
curriculum

Incident response training
and procedures

Timely customer
communication during
incident response

the part of the system being changed by the action, and goal which
is the purpose of the action item. We have given each extracted
action item (and the rich set of additional information included
with each one) an ID made up of the ID of the IR and a sequence
number, such as 6-4, which is the fourth action item in IR 6. Table 1
summarizes a few examples of our extracted data.

3.2 Data Analysis
We followed a grounded theory approach for our analysis, with two
researchers (the authors of this paper) independently reviewing a
subset of the incident reports and identifying the action item. They
then came together to discuss and reach agreement on which action
items to include/exclude and how to accurately capture the four
properties (event, action, target, goal). We used an open coding
approach to categorize the dimensions of the actions individually,
creating an initial set of codes whichwere refined iteratively. Finally,
we performed axial coding on the grouping of codes to help tune
the coding scheme by interpreting and reflecting on their mean-
ings. During each part of this analysis, we kept in mind that the
purpose of the analysis was to characterize post-incident analysis,
and focused on this aspect while selecting and refining our codes.

We selected four questions to aid our characterization of incident
analysis. What motivates these action items? What is being done?
What parts of the system are changing? Why are these actions being
performed? We have also identified underlying concepts found
during our coding by looking at the relationships between action
items in a given incident and also across all the incidents. In the
following section, we report on the results of this analysis. We have
made the action items and coding available publicly 4.

3.3 Limitations
Our analysis is limited to what is reported in publicly published
incident reports, which limits our analysis and the claims we can
make in several important ways. First, we have no visibility into the
range of actions that were considered (but possibly not selected)
and we have only a limited view of how actions were chosen. Sec-
ond, the publicly published actions list may not include all actions
4https://github.com/BYU-SE/mo2re-action-items-crossroads-of-re-and-se

(or all details about the included actions), meaning our dataset may
provide an incomplete view of the ways systems are evolved. Fi-
nally, we do not currently have insight into what happens after the
report is published and work on the actions begins. Despite these
limitations, we have developed some important insights, however
as this research continues we will incorporate additional sources
of data, such as interview data.

4 RESULTS
The purpose of this section is to characterize the incident analysis
activity from the perspective of its action item output. We are
reporting our preliminary findings in two parts. In the first four
subsections, we report on answers to our aforementioned questions
that we found in the events, actions, targets, and goals in our data
set. Second, we discuss three concepts that have emerged from our
data as important concerns to stakeholders after an incident. The
understanding formed in this section will allow us to explore how
formal treatment of incident analysis as an RE activity in Section 5.

4.1 What motivates these action items?
As mentioned above, we have identified the incident event that mo-
tivated each of the action items we have extracted. These events can
be seen as inputs to the incident analysis process and they capture
details about the scenario, the way the system behaved (both what
went well and what did not), the actions of the responders and the
consequences of those. We have categorized the events into three
top-level categories capturing the relationship of the event to the
incident:

(1) a trigger that began the incident,
(2) a part of the incident, or
(3) in response to part of the incident.
This categorization demonstrates how action items are selected

in response to all parts of an incident’s lifecycle from its inception
to its lingering effects. We note that many of the events could have
occurred different parts of that lifecycle, though we do not consider
this in our categorization.

Before the incident describes the time when the socio-technical
system was operating normally and the event describes a trigger, a
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perturbation to the normal operation. Maintenance has risks when
a human maintainer can act on incorrect data such as incomplete
health metrics (7-5) even when “following the documented proce-
dure” (IR 7) and these actions may have long-reaching effects like
incidents lasting into peak hours (7-10, 7-11). Two incidents and
eight action items had deployment-related events–when a defect
was missed in the pipeline and was deployed (13-1, 13-2, 13-3, 13-5)
and when old defective code was reintroduced after a crash and
restart (21-1, 21-3, 21-5).

Unsurprisingly the largest motivation is failures from the in-
cident, occurring as roughly half of the events. There are a wide
variety of failures, ranging from components of all types failing
under load (accounting for 21 of the 52) to disconnections between
components to promoting the wrong node in a cluster. We consider
so-called “bad behavior” such as thundering herds (10-1) and con-
nection leaks (7-8) as failures, since it represents a likely deviation
from intended behavior. Limits, such as resource thresholds for
threads (several action items in incident 25) acted as tipping points
in the incidents were also the motivation for some action items.

The response to a failure, which may even while the incident is
still on-going in the case of automated actions like load-shedding
(2-1, 2-2, 2-3), is another motivation for action items. In our dataset,
many incident reports still demonstrate the human-driven nature
of incident response–and human action was often an event. Human
action is often slow such as when triaging (4-2, 9-7) or when time
zones complicate timely responses (5-1, 5-2) but the actions humans
take can also be slow, such as manual cache deployment (9-15),
restarting (9-16, 25-5), and rolling back (4-3). Communication and
coordination also proved to represent some pain-points (5-4, 12-1,
14-1). Lastly, we note that visibility is an important property to a
socio-technical system and several events stemmed from missing
visibility: faults weren’t noticed until peak traffic (4-1), operators
and responders were misled because metrics were lacking (20-5),
and status reporting can be unclear and incomplete (14-3, 14-4).

We argue that the inputs to this process (the events and also
other inputs outside of events such as the environment the system
is operating in, the requirements it must fulfill, etc) provide the
basis for exploring ideas for evolution that then lead to action items.
In general, we see that events captured “what went wrong” during
all parts of an incident and the response to it, and there is evolution
occurring to take specific action against those “wrongs”.

4.2 What is being done?
Here we describe the types of actions of the action items in order to
characterize the work that occurs (or at least is intended to occur)
after the incident analysis process. The types of actions in our data
set can be categorized by their effect on the system, and we have
created three larger abstractions to capture that effect which we
have named simply formative, evolutionary, and other.

(1) Formative actions are preparative and prioritizing,
(2) Evolutionary actions are additive, subtractive, changing, and
(3) Other actions
Formative actions are typically preparative in that they repre-

sent plans for evolutionary actions for the socio-technical system
but don’t evolve it. Evolutionary actions can be additive in that
they add something which was not formally present, subtractive

in that they remove something which was formerly present, and
changing in that are they both additive and subtractive such as
replacing a component. We also included an other categorization
which captures changes like one-off tasks that don’t fit into these
other categories.

Formative actions include preparative actions largely are those
which are about investigation and planning. Investigative actions
may seek to first identify problems which have yet to be explored
in sufficient detail (7-7, 7-8, 9-16), identify options available to
engineers (21-4), evaluate or reevaluate those options (10-4), or
perform a review on configurations (18-5), decisions (20-4), and
algorithms (18-1). Planning actions included plans for preemptive
scaling for known seasonal traffic (18-2) and plans for when to
unfreeze deployments (13-2). Adjusting the priority of work, like
accelerating a project (25-8), also can be considered formative in
that the evolution itself is what is changing. Formative actions also
include other actions like developing coordination processes (5-4)
and reinforcing development methodology (2-1).

Additive evolutionary actions include adding components, doc-
umentation, features, maintenance procedures, monitoring and
logging, testing practices, and staff as well as increasing the fre-
quency of existing practices like testing. For example, adding a
new subsystem to allow DNS caching (8-4) or adding fine-grained
alarming (25-2). We found subtractive evolutionary actions such as
deleting obsolete data (9-13), reducing the health checks that occur
as an activation delay (7-2), decoupling a circular dependency (9-5).
We have also included reducing friction for feature flags by making
them easier to code into the systems (2-2), reducing the frequency
of queries (10-3), and reducing call frequency for requests (24-3)
as subtractive actions. Changing actions include replacement (of
systems, tools, deployment architecture), scaling (e.g., hardware),
fixing (e.g., configurations, defects), and improving (e.g., runbooks,
decision making matrices, failover mechanisms).

4.3 Which parts of the system are changing?
The target of the action items refers to the part of the system being
changed. Since the system being changed is really a socio-technical
system, we have categorized the target into the six components
of socio-technical system theory. These are, with their associated
counts of action items in each component,

(1) Technology (67 action items), or the software that comprises
the systems,

(2) Processes/Procedures (26 action items) used by humans on
the system,

(3) People (5 action items),
(4) Infrastructure (3 action items), or the physical hardware and

aspects of the system,
(5) Goals (3 action items), and
(6) Culture (0 action items).
We have divided the most common category (Technology) into

three subcategories: architecture, software component, and infras-
tructure. Nine Technology architecture targets include changes to
the way a system was deployed (e.g. how a system is partitioned
or if it is distributed). 47 Technology software component targets
were actions taken on software that was central to the system(s)
involved in the incident such as the application, caching layer, cron
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jobs, storage systems, services, and test suites at various levels such
as configuration, source code, interaction mechanisms, queries, etc.
Lastly, 11 Technology infrastructure targets were changes to deploy-
ment systems, networking infrastructure, verification mechanisms,
OS configuration, and hardware instance types.

The Processes/Procedures component includes those obviously
related to incident response such as emergency change committee
and related procedures, customer communication and related pro-
cedures, documentation, escalation tooling and processes, rollback
and recovery mechanisms, and training. Other targets in this cate-
gory are maintenance procedures (7-10, 7-11, 19-3), testing activities
and practices (9-2, 12-2, 14-7, 18-4), operational documentation like
runbooks and guides (20-4), organizational and coordination pro-
cesses (5-4), and even user engagement processes (2-4). Changes
to development and engineering methodology (2-1) fall into this
category.

The People component has organization targets, namely its
staffing (5-2, 9-10), customer support (5-1), grouping (5-3), and
organization (19-4). The Infrastructure component has data center
targets: its architecture (9-8), its network cabling (19-1), and phys-
ical documentation like labels (19-2). The Goals component has
three identical targets: the engineering roadmap (9-9, 14-4, 25-8).

In our data, we see that the incident analysis process considers
designing and refining requirements, domain assumptions, spec-
ifications, and the implementations for most parts of the socio-
technical system and this contrast a naive position that only the
software element of the system is considered for changes after an
incident.

4.4 Why are these actions being performed?
Above we have described the kinds of changes that result from the
incident analysis process our work aims to characterize. Here we
describe the goals of that work. In our data, we have found that
many improvements relate to:

(1) safety to tolerate or prevent a failure or event,
(2) visibility to detect and react to a failure or event, or
(3) maturing incident response and development activities.
Safety goals include human aspects such as improving decision

making (6-4, 7-11), creating trust in existing safety mechanisms (13-
5), and engaging experts more quickly (12-1). In software, these in-
clude improving performance, preventing specific failure scenarios,
adding safety margins by providing headroom, and isolating failure
effects (25-7). Several goals related to tolerating failure, namely sus-
tained unavailability of a dependency (25-9) and loss of an entire
data center (14-5).

Visibility goals covered changes in several areas of software de-
velopment such as ensuring visibility into capabilities like feature
flags (2-3), detecting and catching problems "before they become
user facing" (4-1) or earlier in the release pipeline (21-7), and im-
proving the accuracy of health metrics (7-5). Visibility can be used
to proactively react (i.e. hopefully preventing an incident) such as
earlier notification of approaching failure (9-6) and awareness of
changes made in dependencies (5-3). Visibility goals also seek to
change incident response - to allow engineers to more quickly iden-
tify problems (9-5, 20-5) and understand behavior and performance
(9-7) during debugging for instance.

In some cases, the goal of the action items is to mature a process
or activity so that it becomes less brittle, and this is often in re-
sponse to a pain point exposed in the incident, and done to prevent
the pain point from being felt in the future. Timeliness and com-
munication tended to have room for improvement. Time-oriented
goals considered reducing time to recover (avoiding using invalid
cache data, minimizing cold start time, quicker access to documen-
tation, speeding up incident response mechanisms), reducing time
to resolve, reducing time for triage, and timely communication
(with clear notifications, around the clock support, better escala-
tion) between engineers and also to customers. Communication
goals encompassed including more relevant information (7-12), ad-
ditional granularity (14-3), and maintaining an open channel where
previously there was none (2-4).

Lastly, there were some development goals relating to complet-
ing an existing effort more quickly (9-9, 9-10, 14-4, 25-8), fixing a
problem permanently (21-3), and carefully reintroducing a feature
(9-18).

4.5 Concepts
We present three concepts which emerge from the data, and from at
least one of the four questions we asked in the previous subsections.
We argue that these concepts are important, cross-cutting ideas that
represent concerns that stakeholders including incident responders,
engineers of the system, and users hold. The discussion here relates
to (briefly) presenting these concepts and we will say more later
about how these concepts are important to treating incident analysis
process as an RE activity.

4.5.1 Similarity. We have repeatedly seen IRs include statements
suggesting that the intent of doing incident response, action items,
and more generally, learning from incidents, is to prevent a reoc-
currence of the incident (or a part of the incident). This statement
is couched in the idea of similarity - a future incident may be com-
pletely identical, or it may be similar in some number of ways. The
analytic concept of similarity shows up in action items, frequently
in events (e.g. a specific failure) and goals (e.g., preventing overload),
and we have also captured it in memos we have written about the
IR itself (i.e. not tied to one particular action item).

The concept of similar addresses 1) what is it similar to and 2)
how something is similar. The former is most commonly an event
which may be a failure (e.g., a DNS failure in 22-4), but also may
be a tipping point such as a scaling limit (25-7), bugs, (21-6) or
even just a negative aspect of the incident like miscommunication
to customers (14-1) or unclear status reporting (14-3). Something
may be similar in the impact, including the duration (7-10), blast
radius, or even effort to fix. They also appear to indirectly refer to
the behavior of the system or how it may react to the event (e.g.,
protection against a class of failures or scenarios in 13-1, 25-7).

4.5.2 Uncertainty. The concept of uncertainty also manifests in
the events and goals of action items. Unforeseeable, unexpected,
and unanticipated events may be tipping points (6-1, 9-11, 10-1),
limits (10-1), and complex failures (6-1). There is uncertainty in
goals related to ideas of safety and risk like providing additional
headroom (9-13, 10-2, 10-3, 10-4, 10-5, 24-3, 24-4, 25-1) and being
careful when reintroducing a feature after it led to an extensive
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outage (9-18). Some incident reports also mention uncertainty un-
tied to a specific action item - such as being unable to ascertain the
origin of a failure (IR 3), noticing the limits of anticipation (IR 2),
and addressing the immediate culprit but being aware that they are
continuing to be at risk for tipping over (IR 10).

4.5.3 Prioritization. Action items have a prioritization driven by
scarcity in roadmap, budget, etc. In our experience, key action items
are done most quickly, and in some cases before the incident report
is even published. Action items included in incident reports are
typically those that have not yet been completed and range from
those being done soon to those which will be placed on a backlog
and may never be completed. We note the difference between prior-
itization of an action item (i.e., the ordering of that item relative to
other work which needs to be completed), the amount of effort re-
quired to complete an action item (e.g. expansive, time-consuming
actions), and the scheduling of an action item (i.e., when it will be
started).

In our data, we observed four examples of prioritization. First,
ordering explains how some action items will be done or take place
before others (25-3, 25-4), though it may be the importance of later
action items which defines the priority of preceding ones (in other
words, preparatory workwhich by itself is inconsequential). Second,
a backlog is where actions with lower priority (13-4, 13-5) may live
until items with higher priority are completed. Third, action items
may be reprioritizations (2-1, 14-4) e.g., when engineers “realized
more clearly the value of [a feature]” (2-1). All the examples in our
data are from lower priorities to higher ones, but the opposite could
occur and does occur naturally when the previously high priorities
are pushed back after reprioritization. Fourth, accelerating and also
continuing existing work shows how the priority of an action may
be increased or affirmed (7-4, 9-8, 14-3, 25-7).

5 DISCUSSION
From our perspective, incident analysis is related to requirements
engineering in several ways, but this connection is not well studied,
nor is it made explicit during incident analysis. A failure sheds
light on how well requirements are satisfied (or more specifically
a scenario is which they are likely violated), challenges domain
assumptions, and provides light on the context in which the system
operates. As part of this ongoing research project, we are interested
in exploring this relationship further, and we are interested in
exploring what benefits a requirements engineering focus can bring
both to incident analysis and the work that follows that analysis. In
this section, we present some of our initial ideas along these lines, by
discussing four incident analysis challenges or open questions, and
hypothesizing about how RE activities and principles might help
in that engineering context. These four challenges are summarized
in Table 2.

(1) Adding unplanned effort. The incident analysis process we
have studied occurs when there is a failure and of course is not
scheduled in advance. We have seen that the actions that result
were not previously planned and so have implications for an orga-
nizations “roadmap”, staffing, etc. Even when an action represents
the re-prioritizing of existing work, this still implies a change to
the roadmap. For example, accelerating efforts to move a system to
multiple availability zones (9-8) is a major effort and is even called

out in another action item as a change to roadmap and staffing
plans to accelerate their existing efforts (9-9). We anticipate that
incident analysis situated in requirements engineering could use
a requirements-related risk analysis [2] to allow the changes to
roadmap and staffing to be prioritized correctly amid the planned
work. For example, moving the system to multiple availability zone
may be judged to be a critical way manage a risk that has been
unacceptable; to eliminate a determined single point of failure that
had exacerbated the impact of the root cause issues in a way that
contributed to the extended 73 hour outage. Determining where
this work should lie (immediate, within the quarter, within the year)
is challenging and requirements engineering can improve decision
making around tradeoffs. We also expect that RE treatment can help
with improving our understanding and handling of how unplanned
work impacts roadmaps.

(2) “Similar” incidents.When considering how action items should
prevent a similar incident, the similarity scale goes from a repeat of
the exact incident (narrow) to a future incident which only loosely
rhymes (broad). The scale may indicate, and provide an size esti-
mate of, a gap in requirements, domain assumptions, specifications,
implementation, etc. The iterative nature of software engineering
means that we know software is unlikely to reach completeness
and so the scale of the gap may provide an estimate of risk (e.g.,
of how incomplete the software is). Likewise, the similarity scale
that the collective action items address closes off some portion of
the total risk. In other words, similarity is a useful dimension to
engineers when considering what they want to do next (after an
incident) since a future roadmap is, in a way, a description of the
organization’s comfort with risk. It is clear that before that before
the correct actions could be decided on or acted on, additional RE
work would be needed. We anticipate that this work might include
formalizing the similarity scale with a more complete description
of potential “similar” dimensions targeted to the incident which
just occurred and then judging the level of acceptable risk of those
similar incidents.

(3) Inherent uncertainty. It is important to admit, from an RE
perspective, that uncertainty is inherently present in most software
systems and many software engineering activities (e.g. designing,
modeling, prototyping, verifying, various deployment strategies,
monitoring, testing) relate to managing uncertainty. From an RE
perspective, there is uncertainty in (1) the extent to which require-
ments and assumptions are complete, (2) the extent to their satisfac-
tion by the implementation, and (3) the extent to which there will
be obstacles to their satisfaction [3]. The socio- side of the socio-
technical system also brings uncertainty. Knowledge uncertainty is
uncertainty in the assessment of physical uncertainty by experts
when judging e.g., how likely a failure is to occur. The work which
follows an incident can be couched as ways to reduce these uncer-
tainties and making uncertainty explicit will allow management by
RE uncertainty approaches [18].

(4) Violating assumptions. As part of an incident analysis, an
assumption may have been discovered to be incorrect (e.g. “we had
believed [..] to be impossible”, IR 21). In this case, the assumption
was about the behavior of the system, and rightly so, several of the
action items had the goal of evolving the system so that there was
more confidence that the assumption was true (catch the problem
earlier in the pipeline, fixing a defect, removing the temporary fix
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Table 2: A summary of incident analysis challenges and open questions, and requirements engineering applications

Challenges and open questions Potential application of Requirements Engineering

How to accommodate the unplanned effort that
comes from action items

Use requirements-related risk analysis to improve the basis for making roadmap
tradeoff decisions with existing work

What “similar” incidents should be prevented? Use a contextualized similarity scale for the incident to determine the acceptable
risk of violating requirements.

How to better manage the inherent uncertainty in
the system?

Be explicit about the uncertainty in requirements, assumptions, specifications, and
(the behavior of the) implementation of the system

How to handle unexpected violations of
assumptions in the system?

Be explicit about assumptions in the system, perform risk analysis to anticipate the
harm, and strategically eliminate unacceptable risks

from a previous patch which was part of the incident). Alternatively,
engineers could have considered ways to change the assumption,
perhaps by loosening or removing it (engineer the system in a way
that it doesn’t matter if the behavior occurs). The choice of action
was a way that uncertainty, in this case about the satisfaction of
an assumption, was addressed. We suspect that a solution to this
problem might be RE related, such as mapping or making explicit
the types of assumptions present in systems and performing risk
analysis to both discover assumptions and rank the harm if they
were to be violated.

The ideas just discussed are very preliminary, and we plan to
further explore the relationship between incident analysis and re-
quirements engineering. Specifically, we have already begun work
to identify the relationships between action items, though we have
not yet reported on these due to space constraints. We anticipate
that understanding patterns will help preserve the intention [11]
behind the actions and help engineers better maintain the link
between requirements and source code [9, 10].

6 CONCLUSION
We have performed an analysis of action items found in publicly
available software incident reports and found that the work being
is evolutionary and formative in nature. The actions affect many
parts of the socio-technical system, though most are concentrated
on the technology (the software systems) and rarely if at all af-
fect the culture, goals, and infrastructure. These actions are being
performed in response to events which occurred in all parts of an
incident’s lifecycle (inception to lingering effects) and these actions
are frequently taken to improve safety, visibility of the system, and
maturity of engineering activities.

Our analysis has elicited important concepts in action items,
and we presented and discussed these with the intent of charac-
terizing incident analysis. We have also proposed how a formal
treatment of the activity as an RE activity could address challenges
and open questions, leading to a better selection of action items
and corresponding evolution of the socio-technical system.
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