
Probing with Precision: ProbingQuestion Generation for
Architectural Information Elicitation

Gokul Rejithkumar
gokul.rejithkumar@tcs.com

TCS Research
Pune, India

Preethu Rose Anish
preethu.rose@tcs.com

TCS Research
Pune, India

Jyoti Shukla
jyotis.shukla@tcs.com

TCS Research
Pune, India

Smita Ghaisas
smita.ghaisas@tcs.com

TCS Research
Pune, India

ABSTRACT
Software Requirements Specifications (SRS) often lack the neces-
sary level of specificity required by software architects to make
well-informed architectural decisions. This deficiency compels soft-
ware architects to probe business analysts to collect more details
pertinent to architectural requirements from the clients. In our
previous work, we introduced Probing Question-flows (PQ-flows)
that can assist business analysts to probe stakeholders and gather
architecturally significant information for the creation of a more
comprehensive SRS. Key limitations of our previous work were
the manually created templatized PQ-flows and the mapping of
PQ-flows to the software requirements based on standard Vector
Space Model. In this study, we propose a Retrieval Augmented Gen-
eration (RAG) prompting framework to address these limitations.
We conducted experiments using ChatGPT and Mistral-7B models.
We present our findings utilizing human and automated evaluation
metrics on a subset of the publicly available PUblic REquirements
(PURE) dataset.

CCS CONCEPTS
• Software and its engineering → Requirements analysis; •
Computing methodologies → Natural language generation;
• Information systems→ Information retrieval query processing;
Question answering.

KEYWORDS
Requirements Engineering, Probing Questions, Large Language
Models, Prompting, Retrieval Augmented Generation, ChatGPT,
Mistral

ACM Reference Format:
Gokul Rejithkumar, Preethu Rose Anish, Jyoti Shukla, and Smita Ghaisas.
2024. Probing with Precision: Probing Question Generation for Architectural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MO2RE 2024, April 16, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0569-4/24/04
https://doi.org/10.1145/3643666.3648577

Information Elicitation. In Workshop on Multi-disciplinary, Open, and REle-
vant Requirements Engineering (MO2RE 2024), April 16, 2024, Lisbon, Portugal.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3643666.3648577

1 INTRODUCTION
Software Requirements Specifications (SRS) often specify require-
ments at a high level and lack the necessary level of specificity
required to make well-informed architectural decisions [1–3]. For
example, consider a requirement from the PUblic REquirements
(PURE) dataset [6]—The Event Recognition Processor CSC, identified
XCP-ERP, receives raw CCD data from XCP-CCD, generates output
Reports, and outputs them to XCP-DCX for compression and transmis-
sion to the Spacecraft. It also contains the Event Recognition Algorithm,
the Centroid Algorithm, the bad pixel/row/column routines, bias al-
gorithms, baseline correction, and mean row correction. However,
neither this requirement nor the SRS from which it was extracted
specify critical architectural details such as: the frequency and vol-
ume of raw CCD data being received from XCP-CCD, the format of the
raw CCD data, the output format of Event Recognition Processor CSC,
the latency requirement for processing raw CCD data and generating
output Reports. Such details are crucial for the software architects
(SAs) to make well-informed architectural decisions pertinent to a
given software requirement.

Clients often expect developers and SAs to possess an innate
understanding of their requirements and therefore usually do not
express such details clearly. As a result, the SAsmay need to conduct
additional formal or informal interviews with relevant stakeholders
to clarify and gather missing information. Experienced SAs can
often detect when critical details are absent and may resort to as-
suming the client’s requirements. However, conducting additional
interviews is time-consuming, and relying on assumptions for miss-
ing information can result in costly refactoring efforts during later
stages of the project [2].

In our previous works [1–3], we discovered that skilled and
experienced SAs ask Probing Questions (PQs) to address missing
information in Software Requirements Specifications (SRS). We ex-
plored the perspectives of more than 40 experienced SAs regarding
the process of identifying, analyzing, structuring, and assessing
PQs with respect to five frequently occurring functional areas: Au-
dit Trail, Batch Processing, Business Process State Alerts, Report, and
Workflow. Based on this, we introduced five structured PQ-flows
for each functional area, aiming to equip business analysts (BAs) to
elicit a more comprehensive set of requirements that can contribute

https://doi.org/10.1145/3643666.3648577
https://doi.org/10.1145/3643666.3648577

MO2RE 2024, April 16, 2024, Lisbon, Portugal Rejithkumar et al.

NoExtracted software
requirements

Few-shot
prompt

Generated
candidate PQs

Are all PQs
addressed in

SRS?

Mark requirement
as "No PQs

required"

RAG module
Reduced set of

unanswered PQs
and PQ-A pairs

SRS

Yes

Figure 1: Retrieval augmented prompting framework

sufficient information to the architecture design process. Addition-
ally, we presented an automated approach for analyzing an SRS
and mapping requirements to their respective PQ-flows. The auto-
mated approach first determined whether a requirement qualifies
as an Architecturally Significant Functional Requirement (ASFR)
using a Naïve Bayes binary classifier. Subsequently, it mapped the
ASFR to the relevant PQ-flows employing the Random K-label sets
Ensemble multilabel classifier (RAkEL). The approach used the
standard Vector Space Model (VSM) [15] to find instances where
questions in a PQ-flow might have already been answered in dif-
ferent sections of the SRS. This involved transforming PQs in the
PQ-flow and requirements in the SRS to a VSM and comparing them
using a cosine similarity score. A high similarity score indicated
that a particular PQ had already been addressed somewhere within
the SRS. In such cases, these PQs were removed from the list of
unanswered questions of the PQ-flow. The approach then involved
presenting the unanswered PQs and the PQ-A pairs (answered PQs
and requirement containing the answers to the addressed PQs) to
the BA. The key shortcomings of this work were: (1) PQ-flows:
Manually created templatized PQ-flows that may not elicit any new
information and the limited adaptability of PQ-flow templates to
evolving requirements in software due to their dynamic nature.
For example, consider the alterations and incorporation of new
software requirements prompted by the recent surge in generative
AI models. Additionally, the sustainability and environmental re-
quirements arising from the emerging field of Green AI [16]. (2)
Restrictions: The confinement of PQ-flows to only five functional
areas. (3) VSM and similarity score: A high cosine similarity score in
a VSM does not necessarily imply that the requirement effectively
addresses the PQ, as VSMwith cosine similarity lacks consideration
of semantic information [8].

We encountered only one work [5] in Requirements Engineering
(RE), that aligned with our work, albeit for a different purpose. In
[5], Ezzini et al. proposed a QA system based on machine read-
ing comprehension to support the analysis of requirements. When
presented with a question, the system retrieves relevant passages
from SRSs and pertinent external documents that likely contain the
answers to the questions posed. It further demarcates the answers
to the questions, aiding various stakeholders, including require-
ments engineers. In this work, we introduce a Retrieval Augmented
Generation (RAG) prompting framework for generating PQs [9].
In the literature on RE and Software Architecture, both Functional
Requirements (FRs) and Non-Functional Requirements (NFRs) play

crucial roles in architectural design [2, 13]. Consequently, our focus
in this study is on Architecturally Significant Requirements (ASRs)
– which include both FRs and NFRs rather than restricting them
only to ASFRs.

Given a requirement, our framework: (1) Determines if it is as an
ASR and generates semantically diverse candidate PQs in case the
ASR requires more specificity. This is achieved using a few-shot
prompt (2) Verifies whether the candidate PQs are already addressed
in the SRS through retrieval augmented prompts, thus making a
distinction between local and global contexts of the SRS. (Local
context refers to the specific requirement at hand, while global
context refers to the whole SRS.) This is achieved by combining
cosine similarity with an LLM, thus taking into account contextual
information too. (3) Filters out the addressed PQs and presents the
remaining unanswered PQs and PQ-A pairs to the end user.

Figure 1 presents the retrieval augmented prompting frame-
work. We conducted experiments with two Large Language Models
(LLMs), ChatGPT (gpt-3.5-turbo) [12] and Mistral-7B model [7]. We
annotated and evaluated our framework on 10 SRSs from the pub-
licly available PUblic REquirements (PURE) dataset. We present our
results using automated evaluation metrics for ASR identification
and human evaluation metrics for the quality of generated PQs and
PQ-A pairs.

The remainder of the paper is organized as follows: Section 2
provides details about the dataset and the retrieval augmented
prompting framework, Section 3 delves into the results of our ex-
periments, Section 4 discusses the threats to validity, and Section 5
concludes the paper.

2 METHODOLOGY
In this Section, we discuss the dataset details and the retrieval
augmented prompting framework.

2.1 Dataset creation
We evaluated our framework using a subset of the PUblic REquire-
ments (PURE) dataset [6], which consists of 79 Software Require-
ments Specifications (SRSs) publicly accessible on the web. Among
these 79 documents in PURE, some are already manually ported to
a common XML format by Ferrari et al. [6]. We utilized 10 XML-
formatted documents for dataset creation. We extracted require-
ments from subsubsection (text_body) of these documents. To main-
tain coherence, we treated all sentences within a subsubsection as

Probing with Precision: ProbingQuestion Generation for Architectural Information Elicitation MO2RE 2024, April 16, 2024, Lisbon, Portugal

a single requirement, as splitting them would render the require-
ment unintelligible. We extracted 1195 requirements from these 10
SRSs. The size of each SRS ranged from 10 to 148 pages, with each
requirement having a word count between 10 and 1156 words.

The participants in the dataset annotation task comprised two
authors of this paper and two software architects (SAs). The SAs
have more than 15 years of experience in executing projects across
diverse domains and technologies. The two authors assigned binary
labels to the requirements in the dataset, indicating whether the
requirement is an Architecturally Significant Requirement (ASR) or
not. It is to be noted that every requirement underwent independent
annotations by the two authors. In instances of disagreements, the
requirement was escalated to the SAs. After annotation, the dataset
contained a total of 522 ASRs. Each participant devoted a total of 5
working days to this task, averaging 4 hours per day.

2.2 Retrieval Augmented Prompting
Framework

The retrieval-augmented prompting framework consists of two
stages: (1) In the first stage, we identify a requirement as ASR
and generate candidate PQs if necessary, focusing solely on the
local context. However, due to the cross-referencing nature of the
information in SRS, a PQ might be addressed in another section of
the SRS. Consequently, some or all the candidate PQs generated in
the first stagemay be extraneous, as they could already be addressed
in some other section of the SRS.We address this issue in the second
stage by considering the global context. (2) In the second stage, we
employ Retrieval Augmented Generation (RAG) to filter out PQs
from the candidates that have already been answered in the SRS,
resulting in a more refined set of relevant PQs and PQ-A pairs.

We utilized the Hugging Face PyTorch implementation of the
Mistral-7B model, specifically we used the zephyr-7b-beta1 version.
We utilized the OpenAI API for interacting with gpt-3.5-turbomodel
(ChatGPT), specifically we used gpt-3.5-turbo-06132 version (train-
ing data up to September 2021). Figure 2 presents the schematic of
RAG module. We ran all our experiments on an Nvidia Tesla V100
GPU with 32 GiB GPU memory and 60 GiB CPU RAM.

2.2.1 ASR Identification and Generation of Candidate PQs. Various
prompting techniques, including zero-shot, few-shot, Chain-of-
Thoughts (CoT) [18], Tree-of-Thoughts (ToT) [19], self-consistency
(few-shot-CoT) [17], EmotionPrompt [10], and others, can be found
in the literature of Natural Language Processing (NLP). According to
[18], CoT negatively impacts the performance of models with fewer
than 100B parameters. This also applies to ToT and self-consistency,
as they incorporate CoT as a fundamental component. In [10], the
authors proposed EmotionPrompt and claimed that LLMs possess
emotional intelligence. They showed that the performance of LLMs
can be enhanced by providing emotional stimuli by appending
particular phrases to prompts, such as: “This is very important to
my career.”, “Are you sure?”, “You’d better be sure.”, among others.
EmotionPrompt also yielded positive performance enhancements
on models with very few parameters. Additionally, it also gave
better performance than CoT. Consequently, we utilized few-shot

1https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
2https://platform.openai.com/docs/models/gpt-3-5

prompts inspired by EmotionPrompt for ASR identification and
candidate PQ generation.

Few-shot learning involves providing the model with a collection
of well-crafted examples, each comprising input and the correspond-
ing desired output related to the targeted task. By exposing the
models to the expected inputs and outputs, the model gains a deeper
comprehension of human intentions and the criteria for desired
responses. For improved prompt clarity, we formulated a few-shot
prompt, with six examples pertaining to ASR and another six be-
longing to the non-ASR class. We equally divided the examples in
the prompt to address majority bias [21]. To mitigate recency bias
[21], we alternated between ASR and non-ASR examples in the
prompt. Building on [10], we enhanced the prompt by appending
an emotional stimuli phrase “This is very important to my career.”.
To enable easier processing of the model’s output, we instructed the
model to generate the output in JSON format. Given a requirement,
the prompt instructs the model to identify whether it is an ASR.
Subsequently, if it is determined to be an ASR, the model checks
whether PQs are required. If they are necessary, it generates PQs,
taking into account only the given requirement (local context).

A system prompt offers context and guidance by outlining a
particular goal or role for the LLM before presenting a question or
task. Additionally, the system prompt plays a crucial role in estab-
lishing the overall tone of the LLM. While we instructed the models
to generate its output in the format of a JSON object through the
user prompt, we observed that instructing the LLMs to generate
JSON in the user prompt alone occasionally resulted in a deviation.
Therefore, we instructed the LLMs to generate its output in JSON
format in the system prompt as well. Figure 3 illustrates the struc-
ture of the prompt template for ASR identification and candidate
PQ generation including the system and user prompt.

We experimented with temperature values ranging from 0.1 to
1.5. The Mistral-7B model yielded the best classification results at
temperature values of 0.8 and 0.9, while for the gpt-3.5-turbo model,
the optimal temperature was found to be 0.5. We set the context
window to 3200 since it addressed all the requirements and prompts
in our dataset. During inference, we used a batch size of 4.

2.2.2 Filtering Extraneous PQs from Candidate PQs. As mentioned
earlier, PQs within the generated candidate PQ set may have al-
ready been answered in a different section of the SRS. To filter out
these extraneous PQs, we need to consider the global context. We
employed RAG to factor in the global context since the limited
context window of LLMs restricts passing in the entire SRS to the
LLM.

Embeddings and Vector database. We extracted requirements
from our dataset and segmented it into chunks of length of 350
tokens (chunk size), based on the average length of requirements in
the dataset. To prevent the loss of information during this segmen-
tation, we set an intersection window of 40 tokens (chunk overlap)
between two consecutive chunks.We transformed the requirements
in the SRS into mathematical representations (embeddings) that
allows for efficient storage and retrieval from a database. This was
achieved using a pretrained embedding model. We used the Hug-
ging Face implementation of the bge-large-en3 embedding model to

3https://huggingface.co/BAAI/bge-large-en-v1.5

https://huggingface.co/HuggingFaceH4/zephyr-7b-beta
https://platform.openai.com/docs/models/gpt-3-5
https://huggingface.co/BAAI/bge-large-en-v1.5

MO2RE 2024, April 16, 2024, Lisbon, Portugal Rejithkumar et al.

Retriever
(cosine similarity)

Prompt template
(Relevant chunks

 + Query)

SRS

Embedding model
(bge-large-en-v1.5)

Relevant chunks
similar to query

AnswerVector
embeddings LLM

Vector Store
(Chroma)

Query converted to
embedding

Candidate PQ
based on local
context (Query)

Embedding model (bge-large-en-v1.5)

Figure 2: Retrieval Augmented Generation (RAG) module

convert the chunks to embeddings. We then used the open-source
Chroma4 vector database to store these embeddings for later re-
trieval.

Retrieval Augmented Prompting. In this step, we utilized the vec-
tor database and the LLM to retrieve relevant chunks and verify
whether they address the candidate PQ using a prompt. Figure 4 il-
lustrates the prompt template including the system and user prompt.
The candidate PQ was converted into a query vector (embedding)
using the bge-large-en embedding model. To retrieve chunks rel-
evant to the query vector, we employed cosine similarity as the
retrieval metric and retrieved the top 4 chunks showing the highest
similarity to the query vector. Subsequently, we prompted the LLM
with the retrieved chunks and the candidate PQ to assess whether
the chunks answer the candidate PQ (Context window of 1800 and
temperature of 0.6 for both models.). If the LLM failed to provide
an answer to the candidate PQ based on the retrieved chunks, we
retained the PQ as unanswered. However, if the LLM answered the
candidate PQ, we returned the PQ-A pairs.

3 RESULTS
We evaluate the following: (1) Identification of ASR, (2) Performance
of RAG module, and (3) Quality of the generated PQs.

3.1 ASR Identification
For the evaluation of ASR identification, we utilized the 10 SRSs
that we had annotated with binary labels indicating ASR or Not
ASR. We designated ASR as the positive class. We placed a greater
emphasis on recall, as failure to identify an ASR instance would
imply overlooking architecturally significant information. There-
fore, we present our results using the F2-score, aiming to minimize
false negatives. Table 1 presents the results of ASR identification
for both models. As evident from Table 1, both models achieved
an F2-score of 0.81. However, the Mistral-7B model exhibited a
very low precision of 0.50. In contrast, ChatGPT exhibited a more
balanced and acceptable precision and recall.

4https://www.trychroma.com/

The assistant strictly adheres to the user's instructions and tasks. The tasks
given by the user will be challenging, so the assistant should pay close
attention while solving the provided complex tasks. The assistant's
response is always a JSON object and does not include any additional
details.

Your task is to first check whether the given requirement statement is an
Architecturally Significant Requirement (ASR). Second, if it is an ASR and
the requirement seems to be incomplete or lacks necessary details,
recommend up to six Probing Questions (PQs) that will aid me in producing
a more complete ASR.

<Definition of ASR for LLM understanding>

Start of examples.
<Example 1: ASR> <Example 2: Not ASR>...<Example 12: Not ASR>
End of examples.

Now provide your analysis in JSON with keys 'Classification rationale',
'ASR', 'PQs required', 'PQs' for the following given requirement statement in
triple backticks.

Given requirement statement: ```{}```

This is important to my career.

User prompt

System prompt

Figure 3: Prompt template for candidate PQ generation

The assistant strictly adheres to the user's instructions and tasks. The tasks
given by the user will be challenging, so the assistant should pay close
attention while solving the provided complex tasks.

System prompt

Use the following pieces of context to answer the question. If you don't
know the answer, just say "I don't know". Use three sentences maximum
and keep the answer concise. No additional details.

Question: {candidate PQ}

Context: {context 1, context 2, context 3}

Give accurate answers. This is important to my career.

User prompt

Figure 4: Prompt template for RAG

3.2 RAG Module
We assigned the evaluation of RAG module to the two SAs ref-
erenced earlier. The assessment of RAG module necessitates a

https://www.trychroma.com/

Probing with Precision: ProbingQuestion Generation for Architectural Information Elicitation MO2RE 2024, April 16, 2024, Lisbon, Portugal

Table 1: Results of ASR identification

Model Precision Recall F2-score
ChatGPT 0.87 0.79 0.81
Mistral-7B 0.50 0.96 0.81

document-level evaluation. We assessed 267 PQs, including PQ-
A pairs, randomly sampled across 50 requirements from five SRSs.
For each PQ, the SAs first verified whether the corresponding SRS
answered the PQ. To find answers to the PQs, the SAs examined
whether the keywords used in the PQ were explicated elsewhere
in the corresponding SRS. Then, the SAs compared their answer
with the answer generated by the retrieval augmented prompt. A
score of 1 was assigned for correct answers, while a score of 0 was
assigned for incorrect, hallucinated answers, or answer present in
the SRS but not retrieved. The SAs devoted a total of 5 working days
to this task, averaging 5 hours a day. We present our results using
accuracy in Table 2 for both models. Out of the 50 requirements
evaluated, Mistral-7B marked 11 as ‘no PQ required’ and ChatGPT
marked 14 as ‘no PQ required’.

Table 2: Results of RAG module

Model Accuracy
ChatGPT 0.88
Mistral-7B 0.82

3.3 Quality of Generated PQs
The participants in this evaluation included the two SAs. To assess
the quality of the generated PQs, we evaluated the same set of 50 re-
quirements (267 PQs) randomly sampled from five SRSs as outlined
in Section 3.2. In the absence of a ground truth for PQ evaluation,
we employed qualitative human evaluation metrics. Several human
evaluation metrics have been proposed in the literature [11] for
evaluating generated questions. We specifically chose metrics that
are most relevant to our task based on feedback from the SAs. We
adopted individual human evaluation metrics—Relevance, Seeking
New Information, and Usefulness from [14]. Additionally, we
adopted a group level metric—Redundant from [20]. Although
[14] and [20] are not directly related to PQ generation, the SAs
deemed that these metrics are relevant to PQ quality evaluation.
The SAs evaluated the PQs along the following axes, and chose
from YES (1) or NO (0):

• Relevance: We ask, “Is the generated PQ relevant to the given
requirement?”

• Seeking New Information:We ask, “Does the PQ seek any
new information not specified in the given requirement?”

• Usefulness:We ask, “Is the PQ useful with respect to the given
requirement in eliciting architecturally significant informa-
tion?”

• Redundant: We ask, “Are there multiple instances of para-
phrased duplicate PQs within the set of PQs?” This metric is a

group-level metric and applies to a set of PQs. A lower value
of this metric is preferred since redundancy is not desirable.

Table 3 presents the results of PQ quality evaluation. We present
the results averaged across the 267 PQs. The task of PQ quality
evaluation took a total of 6 working days, averaging 4 hours per day.
We observed a very low value for the Redundant quality metric
across both the models, indicating that questions generated based
on the local context were semantically diverse. Figure 5 presents
examples of the generated PQs based on local context and a refined
set of filtered PQs based on the global context across both the
models for a requirement from the PURE dataset.

4 THREATS TO VALIDITY
The first threat to validity is the absence of standard automated
evaluation metrics for evaluating the quality of the generated PQs.
To mitigate this threat, we asked two software architects (SAs) to
verify the quality of generated rationales by leveraging human
evaluation metrics such as Relevance, Seeking New Information,
Usefulness, and Redundant.

The second threat to validity is the reproducibility of the ex-
periments reported in this paper. To support reproducibility, we
have made our dataset available on demand. Additionally, we have
also provided the hyperparameter values for all models. However,
it should be noted that LLMs may not always generate the same
answers, even if hyperparameters are the same. Behavior drift and
generation quality deterioration have also been observed with Chat-
GPT [4].

5 CONCLUSION
In this study, we presented a retrieval augmented prompting frame-
work designed to aid BAs to effectively probe project stakeholders
and extract more precise architecturally significant information
during the drafting of an SRS. Given an SRS, the framework gener-
ates PQs for each requirement within the SRS, focusing on the local
context. Since PQs based on the local context might find answers
in other parts of the SRS, the framework leverages RAG to consider
the entire SRS comprehensively and expunge the answered PQs.
Subsequently, the framework provides the generated PQs and their
corresponding PQ-A pairs for requirements that necessitate posing
a PQ. We used ChatGPT and Mistral-7B models for implementing
the retrieval augmented prompting framework. ChatGPT’s perfor-
mance was found to be slightly better than the Mistral-7B model
across both ASR identification and PQ generation. To assess the
effectiveness of our approach, we conducted evaluations using a
dataset comprising 10 SRSs sourced from the PURE dataset. Further,
we plan to conduct empirical studies involving SAs and BAs to
gauge the usefulness of the approach. The embedding model we
utilized has not been pre-trained and fine-tuned on SRSs. We intend
to conduct experiments by fine-tuning an embedding model and
assess its retrieval efficacy, specifically for SRSs. Additionally, we
plan to conduct an empirical study to assess the efficacy of our
framework, incorporating objective measures such as the number
of follow-up questions required after using our framework, time
saved in software development, and the impact on efficiency in
software development.

MO2RE 2024, April 16, 2024, Lisbon, Portugal Rejithkumar et al.

Table 3: Results of PQ quality evaluation using human evaluation metrics

Model Relevance Seeking New Information Usefulness Redundant
ChatGPT 0.78 0.83 0.76 0.05
Mistral-7B 0.74 0.76 0.71 0.02

ChatGPTMistral-7B

Systems supporting OM should support multiple deployment options (e.g., client server, disconnected, and potentially web based).

Requirement

Generated PQs - Local context

Final Filtered PQs - Global context

PQ1. How will the system handle data synchronization between client
and server modes?

PQ2. What data replication strategies will be used in disconnected
mode?

PQ3. What scalability measures will be taken for web-based
deployment?

PQ4. How will data security be ensured in each deployment option?

PQ5. How will the system handle network connectivity failures in each
deployment option?

PQ6. What performance benchmarks will be used to determine the
optimal deployment option for different use cases?

PQ1. What are the specific requirements for client-server deployment?

PQ2. What considerations are there for supporting disconnected
deployment?

PQ3. What web-based technologies or frameworks should be
supported?

PQ4. Are there any performance requirements associated with each
deployment option?

PQ5. How will data synchronization be handled in disconnected
deployment?

PQ6. Are there any security considerations for each deployment
option?

Generated PQs - Local context

Final Filtered PQs - Global context

PQ2., PQ3., PQ4., PQ5., PQ6. PQ1., PQ2., PQ4.

Figure 5: Examples of generated PQs

REFERENCES
[1] Preethu Rose Anish, Balaji Balasubramaniam, Jane Cleland-Huang, Roel

Wieringa, Maya Daneva, and Smita Ghaisas. 2015. Identifying Architecturally
Significant Functional Requirements. In 2015 IEEE/ACM 5th International Work-
shop on the Twin Peaks of Requirements and Architecture. 3–8. https://doi.org/10.
1109/TwinPeaks.2015.9

[2] Preethu Rose Anish, Balaji Balasubramaniam, Abhishek Sainani, Jane Cleland-
Huang, Maya Daneva, Roel J. Wieringa, and Smita Ghaisas. 2016. Probing for
Requirements Knowledge to Stimulate Architectural Thinking. In Proceedings of
the 38th International Conference on Software Engineering (ICSE ’16). Association
for Computing Machinery, New York, NY, USA, 843–854. https://doi.org/10.
1145/2884781.2884801

[3] Preethu Rose Anish, Maya Daneva, Jane Cleland-Huang, Roel J. Wieringa, and
Smita Ghaisas. 2015. What you ask is what you get: Understanding architecturally
significant functional requirements. In 2015 IEEE 23rd International Requirements
Engineering Conference (RE). 86–95. https://doi.org/10.1109/RE.2015.7320411

[4] Lingjiao Chen, Matei Zaharia, and James Zou. 2023. How is ChatGPT’s behavior
changing over time? arXiv:2307.09009 [cs.CL]

[5] S. Ezzini, S. Abualhaija, C. Arora, and M. Sabetzadeh. 2023. AI-based Question
Answering Assistance for Analyzing Natural-language Requirements. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). IEEE
Computer Society, Los Alamitos, CA, USA, 1277–1289. https://doi.org/10.1109/
ICSE48619.2023.00113

[6] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. 2017. PURE:
A Dataset of Public Requirements Documents. In 2017 IEEE 25th International
Requirements Engineering Conference (RE). 502–505. https://doi.org/10.1109/RE.
2017.29

[7] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, De-
vendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel,
Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux,

Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B.

[8] Qilu Jiao and Shunyao Zhang. 2021. A Brief Survey of Word Embedding and
Its Recent Development. In 2021 IEEE 5th Advanced Information Technology,
Electronic and Automation Control Conference (IAEAC), Vol. 5. 1697–1701. https:
//doi.org/10.1109/IAEAC50856.2021.9390956

[9] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin,
Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel,
Sebastian Riedel, and Douwe Kiela. 2020. Retrieval-Augmented Generation
for Knowledge-Intensive NLP Tasks. In Proceedings of the 34th International
Conference on Neural Information Processing Systems (NIPS’20). Curran Associates
Inc., Red Hook, NY, USA, Article 793, 16 pages.

[10] Cheng Li, Jindong Wang, Yixuan Zhang, Kaijie Zhu, Wenxin Hou, Jianxun Lian,
Fang Luo, Qiang Yang, and Xing Xie. 2023. Large Language Models Understand
and Can be Enhanced by Emotional Stimuli. arXiv:2307.11760 [cs.CL]

[11] Nikahat Mulla and Prachi Gharpure. 2023. Automatic Question Generation: A
Review of Methodologies, Datasets, Evaluation Metrics, and Applications. Prog.
in Artif. Intell. 12, 1 (jan 2023), 1–32. https://doi.org/10.1007/s13748-023-00295-9

[12] OpenAI. (n.d.). [n. d.]. OpenAI platform. Retrieved December, 2023 from https:
//platform.openai.com/docs/models

[13] Barbara Paech, Allen Dutoit, Daniel Kerkow, and Antje Knethen. 2002. Func-
tional requirements, non-functional requirements, and architecture should not
be separated -A position paper. (01 2002).

[14] Sudha Rao and Hal Daumé III. 2019. Answer-based Adversarial Training for
Generating Clarification Questions. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Jill Burstein, Christy
Doran, and Thamar Solorio (Eds.). Association for Computational Linguistics,
Minneapolis, Minnesota, 143–155. https://doi.org/10.18653/v1/N19-1013

[15] G. Salton, A. Wong, and C. S. Yang. 1975. A Vector Space Model for Automatic
Indexing. Commun. ACM 18, 11 (nov 1975), 613–620. https://doi.org/10.1145/

https://doi.org/10.1109/TwinPeaks.2015.9
https://doi.org/10.1109/TwinPeaks.2015.9
https://doi.org/10.1145/2884781.2884801
https://doi.org/10.1145/2884781.2884801
https://doi.org/10.1109/RE.2015.7320411
https://arxiv.org/abs/2307.09009
https://doi.org/10.1109/ICSE48619.2023.00113
https://doi.org/10.1109/ICSE48619.2023.00113
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/RE.2017.29
https://doi.org/10.1109/IAEAC50856.2021.9390956
https://doi.org/10.1109/IAEAC50856.2021.9390956
https://arxiv.org/abs/2307.11760
https://doi.org/10.1007/s13748-023-00295-9
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://doi.org/10.18653/v1/N19-1013
https://doi.org/10.1145/361219.361220
https://doi.org/10.1145/361219.361220

Probing with Precision: ProbingQuestion Generation for Architectural Information Elicitation MO2RE 2024, April 16, 2024, Lisbon, Portugal

361219.361220
[16] Roy Schwartz, Jesse Dodge, Noah A. Smith, and Oren Etzioni. 2019. Green AI.

arXiv:1907.10597 [cs.CY]
[17] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang,

Aakanksha Chowdhery, and Denny Zhou. 2023. Self-Consistency Improves Chain
of Thought Reasoning in Language Models. arXiv:2203.11171 [cs.CL]

[18] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed Chi, Quoc Le, and Denny Zhou. 2022. Chain-of-thought prompting elicits
reasoning in large language models. Advances in Neural Information Processing
Systems. 35 (2022), 24824–24837.

[19] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao,
and Karthik Narasimhan. 2023. Tree of Thoughts: Deliberate Problem Solving
with Large Language Models.

[20] Zhiling Zhang and Kenny Zhu. 2021. Diverse and Specific Clarification Question
Generation with Keywords. In Proceedings of the Web Conference 2021 (WWW
’21). Association for Computing Machinery, New York, NY, USA, 3501–3511.
https://doi.org/10.1145/3442381.3449876

[21] Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. 2021. Calibrate
before use: Improving few-shot performance of language models. In International
Conference on Machine Learning. PMLR, 12697–12706.

https://doi.org/10.1145/361219.361220
https://arxiv.org/abs/1907.10597
https://arxiv.org/abs/2203.11171
https://doi.org/10.1145/3442381.3449876

	Abstract
	1 Introduction
	2 Methodology
	2.1 Dataset creation
	2.2 Retrieval Augmented Prompting Framework

	3 Results
	3.1 ASR Identification
	3.2 RAG Module
	3.3 Quality of Generated PQs

	4 Threats to Validity
	5 Conclusion
	References

